SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Costagliola Francesco 1981) "

Sökning: WFRF:(Costagliola Francesco 1981)

  • Resultat 11-20 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Burillo, S. G., et al. (författare)
  • High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Galaxy evolution scenarios predict that the feedback of star formation and nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers into (ultra) luminous infrared galaxies and, eventually, lead to the build-up of QSO/elliptical hosts. Aims. We study the role that star formation and AGN feedback have in launching and maintaining the molecular outflows in two starburst-dominated advanced mergers, NGC 1614 (DL = 66 Mpc) and IRAS 17208-0014 (DL = 181 Mpc), by analyzing the distribution and kinematics of their molecular gas reservoirs. Both galaxies present evidence of outflows in other phases of their ISM. Methods. We used the Plateau de Bure interferometer (PdBI) to image the CO(10) and CO(21) line emissions in NGC 1614 and IRAS 17208-0014, respectively, with high spatial resolution (0: 0051: 002). The velocity fields of the gas were analyzed and modeled to find the evidence of molecular outflows in these sources and characterize the mass, momentum, and energy of these components. Results. While most (95%) of the CO emission stems from spatially resolved (23 kpc-diameter) rotating disks, we also detect in both mergers the emission from high-velocity line wings that extend up to -500-700 km s1, well beyond the estimated virial range associated with rotation and turbulence. The kinematic major axis of the line-wing emission is tilted by 90 in NGC 1614 and by 180 in IRAS 17208-0014 relative to the major axes of their respective rotating disks. These results can be explained by the existence of non-coplanar molecular outflows in both systems: the outflow axis is nearly perpendicular to the rotating disk in NGC 1614, but it is tilted relative to the angular momentum axis of the rotating disk in IRAS 17208-0014. Conclusions. In stark contrast to NGC 1614, where star formation alone can drive its molecular outflow, the mass, energy, and momentum budget requirements of the molecular outflow in IRAS 17208-0014 can be best accounted for by the existence of a so far undetected (hidden) AGN of LAGN71011 L The geometry of the molecular outflow in IRAS 17208-0014 suggests that the outflow is launched by a non-coplanar disk that may be associated with a buried AGN in the western nucleus.
  •  
12.
  • Burillo, S. G., et al. (författare)
  • Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. 125-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ' 1056 cm3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0:3000:500 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≈ 1056cm3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1:3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6 10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (Mmol ∼ 2:7+0:9 1:2 × 107 M) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM=dt ∼ 63+21 37 M yr1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk. © ESO 2014.
  •  
13.
  • Cormier, D., et al. (författare)
  • The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey A ground-based follow-up survey of CO(1-0), CO(2-1), and CO(3-2)
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations of nearby starburst and spiral galaxies have revealed that molecular gas is the driver of star formation. However, some nearby low-metallicity dwarf galaxies are actively forming stars, but CO, the most common tracer of this reservoir, is faint, leaving us with a puzzle about how star formation proceeds in these environments. Aims. We aim to quantify the molecular gas reservoir in a subset of 6 galaxies from the Herschel Dwarf Galaxy Survey with newly acquired CO data and to link this reservoir to the observed star formation activity. Methods. We present CO(1-0), CO(2-1), and CO(3-2) observations obtained at the ATNE Mopra 22-m, APEX, and IRAM 30-m telescopes, as well as [CII] 157 mu m and [OI] 63 mu m observations obtained with the Herschel/PACS spectrometer in the 6 low-metallicity dwarf galaxies: Haro 11, Mrk 1089, Mrk 930, NGC 4861, NGC 625, and UM 311. We derived their molecular gas masses from several methods, including using the CO-to-H-2 conversion factor X-CO (both Galactic and metallicity-scaled values) and dust measurements. The molecular and atomic gas reservoirs were compared to the star formation activity. We also constrained the physical conditions of the molecular clouds using the non-LTE code RADEX and the spectral synthesis code Cloudy. Results. We detect CO in 5 of the 6 galaxies, including first detections in Haro 11 (Z similar to 0.4 Z(circle dot)), Mrk 930 (0.2 Z(circle dot)), and UM 311 (0.5 Z(circle dot)), but CO remains undetected in NGC 4861 (0.2 Z(circle dot)). The CO luminosities are low, while [CII] is bright in these galaxies, resulting in [CII]/CO(1-0) >= 10 000. Our dwarf galaxies are in relatively good agreement with the Schmidt-Kennicutt relation for total gas. They show short molecular depletion timescales, even when considering metallicity-scaled X-CO factors. Those galaxies are dominated by their HI gas, except Haro 11, which has high star formation efficiency and is dominated by ionized and molecular gas. We determine the mass of each ISM phase in Haro 11 using Cloudy and estimate an equivalent X-CO factor that is 10 times higher than the Galactic value. Overall, our results confirm the emerging picture that CO suffers from significant selective photodissociation in low-metallicity dwarf galaxies.
  •  
14.
  • Costagliola, Francesco, 1981, et al. (författare)
  • An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418
  • 2015
  • Ingår i: 4th ALMA Science Conference on Revolution in Astronomy with ALMA: The Third Year, Tokyo, Japan, 8-11 December. - 9781583818831 ; 499, s. 95-98
  • Konferensbidrag (refereegranskat)abstract
    • Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.
  •  
15.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Exploring the molecular chemistry and excitation in obscured LIRGs: An ALMA mm-wave spectral scan of NGC 4418
  • 2016
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759820221 ; 75-76, s. 67-68
  • Konferensbidrag (refereegranskat)abstract
    • The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X-radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Here we present the first ALMA wide-band spectral scan of a dusty LIRG, the CON NGC 4418. We derive molecular abundances and compare them with other Galactic and extragalactic sources. Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. We suggest that the galaxy may be a template for a new kind of chemistry and excitation, typical of CON.
  •  
16.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies -- An ALMA mm-wave spectral scan of NGC 4418
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582, s. A91-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions.Aims. Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments.Methods. We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis.Results. We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments.Conclusions. Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar molecular abundances observed toward NCG 4418 and Arp 220 are consistent with a hot gas-phase chemistry, with the relative abundances of SiO and CH3OH being regulated by shocks and X-ray driven dissociation. The bright emission from vibrationally excited species confirms the presence of a compact IR source, with an effective diameter smaller than 5 pc and brightness temperatures higher than 350 K. The molecular abundances and the vibrationally excited spectrum are consistent with a young AGN/starburst system. We suggest that NGC 4418 may be a template for a new kind of chemistry and excitation, typical of CON. Because of the narrow line widths and bright molecular emission, NGC 4418 is the ideal target for further studies of the chemistry in CONs.
  •  
17.
  • Costagliola, Francesco, 1981, et al. (författare)
  • High-resolution mm and cm study of the obscured LIRG NGC 4418 A compact obscured nucleus fed by in-falling gas?
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding the nature of the power-source in luminous infrared galaxies (LIRG) is difficult due to their extreme obscuration. Observations at radio and mm wavelengths can penetrate large columns of dust and gas and provide unique insights into the properties of the compact obscured nuclei of LIRGs. Aims. The aim of this study is to constrain the dynamics, structure, and feeding of the compact nucleus of NGC 4418, and to reveal the nature of the main hidden power-source: starburst or active galactic nucleus (AGN). Methods. We obtained high spatial resolution observations of NGC 4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz with the SMA in very extended configuration. We used the continuum morphology and flux density to estimate the size of the emitting region, the star formation rate, and the dust temperature. Emission lines were used to study kinematics through position-velocity diagrams. Molecular emission was studied with population diagrams and by fitting a local thermal equilibrium (LTE) synthetic spectrum. Results. We detect bright 1-mm-line emission from CO, HC3N, HNC, and (CS)-S-34 and 1.4 GHz absorption from HI. The CO 2-1 emission and HI absorption can be fit by two velocity components at 2090 and 2180 km s(-1). We detect vibrationally excited HC3N and HNC, with T-vib similar to 300 K. Molecular excitation is consistent with a layered temperature structure, with three main components at 80, 160, and 300 K. For the hot component we estimate a source size of less than 5 pc. The nuclear molecular gas surface density of 10(4) M-circle dot pc(-2) is extremely high and similar to that found in the ultra-luminous infrared galaxy (ULIRG) Arp220. Conclusions. Our observations confirm the presence of a molecular and atomic in-flow, previously suggested by Herschel observations, which is feeding the activity in the center of NGC 4418. Molecular excitation confirms the presence of a very compact, hot dusty core. If a starburst is responsible for the observed IR flux, this has to be at least as extreme as the one in the ULIRG Arp 220, with an age of 3-10 Myr and a star formation rate > 10 M-circle dot yr(-1). If an AGN is present, it must be extremely Compton-thick.
  •  
18.
  •  
19.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Molecules as Tracers of Galaxy Evolution
  • 2011
  • Ingår i: EAS Publications Series. ; 52, s. 285-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
20.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Molecules as tracers of galaxy evolution: an EMIR survey I. Presentation of the data and first results
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Methods. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico Veleta, Spain. We compare the emission of the main molecular species with existing models of chemical evolution by means of line intensity ratios diagrams and principal component analysis. Results. We detect molecular emission in 19 galaxies in two 8 GHz-wide bands centred at 88 and 112 GHz. The main detected molecules are CO, (CO)-C-13, HCN, HNC, HCO+, CN, and C2H. We also detect HC3N J = 10-9 in the galaxies IRAS 17208, IC 860, NGC 4418, NGC 7771, and NGC 1068. The only HC3N detections are in objects with HCO+/HCN 0.8). The brightest HC3N emission is found in IC 860, where we also detect the molecule in its vibrationally excited state. We find low HNC/HCN line ratios (
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy