SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egberts K) "

Sökning: WFRF:(Egberts K)

  • Resultat 91-100 av 175
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
91.
  • Abramowski, A., et al. (författare)
  • VHE gamma-ray emission of PKS 2155-304 : spectral and temporal variability
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 520, s. A83-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations of very high-energy.-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects lead to a better understanding of the mechanisms in play. Aims. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the HESS imaging atmospheric Cherenkov telescopes over a wide range of flux states. Methods. Data collected from 2005 to 2007 were analyzed. Spectra were derived on time scales ranging from 3 years to 4 min. Light curve variability was studied through doubling timescales and structure functions and compared with red noise process simulations. Results. The source was found to be in a low state from 2005 to 2007, except for a set of exceptional flares that occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of (4.32 +/- 0.09(stat) +/- 0.86(syst)) x 10(-11) cm(-2) s(-1) above 200 GeV, or approximately 15% of the Crab Nebula, and a power-law photon index of Gamma = 3.53 +/- 0.06(stat) +/- 0.10(syst). During the flares of July 2006, doubling timescales of similar to 2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behavior at low and high fluxes, which is a new phenomenon in VHE gamma-ray emitting blazars. The variability amplitude characterized by the fractional rms F-var is strongly energy-dependent and is proportional to E-0.19 +/- 0.01. The light curve rms correlates with the flux. This is the signature of a multiplicative process that can be accounted for as a red noise with a Fourier index of similar to 2. Conclusions. This unique data set shows evidence of a low-level.-ray emission state from PKS 2155-304 that possibly has a different origin than the outbursts. The discovery of the light curve ognormal behavior might be an indicator of the origin of aperiodic variability in blazars.
  •  
92.
  • Abdalla, H., et al. (författare)
  • A search for new supernova remnant shells in the Galactic plane with HESS
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
  •  
93.
  • Abdalla, H., et al. (författare)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
94.
  • Abdalla, H., et al. (författare)
  • Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with HESS
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The diffuse very high-energy (VHE; > 100 GeV) gamma-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual gamma-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total gamma-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE gamma-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.
  •  
95.
  • Abdalla, H., et al. (författare)
  • Characterizing the γ-ray long-term variability of PKS2155 304 with HESS and Fermi-LAT
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : The European Southern Observatory. - 0004-6361 .- 1432-0746. ; 598
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) gamma-ray domain. Over the course of similar to 9 yr of H. E. S. S. observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index βVHE = 1 .10+ 0.10-0,13) on timescales larger than one day. An analysis of similar to 5.5 yr of HE Fermi-LAT data gives consistent results (βHE = 1 .20+ 0.21-0.23, on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (beta similar to 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.
  •  
96.
  • Abdalla, H., et al. (författare)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
97.
  • Abdalla, H., et al. (författare)
  • Deeper HESS observations of Vela Junior (RX J0852.0-4622) : Morphology studies and resolved spectroscopy
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study gamma-ray emission from the shell-type supernova remnant (SNR) RXJ0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods. The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RXJ0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results. An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of E-cut = (6.7 +/- 1.2(stat) +/- 1.2(syst)) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644.
  •  
98.
  • Abdalla, H., et al. (författare)
  • Extended VHE gamma-ray emission towards SGR1806-20, LBV 1806-20, and stellar cluster Cl*1806-20
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the High Energy Spectroscopic System (H.E.S.S.) telescopes we have discovered a steady and extended very high-energy (VHE) gamma-ray source towards the luminous blue variable candidate LBV 1806-20, massive stellar cluster Cl* 1806-20, and magnetar SGR 1806-20. The new VHE source, HESS J1808-204, was detected at a statistical significance of >6 sigma (post-trial) with a photon flux normalisation (2.9 +/- 0.4(stat) +/- 0.5(sys)) x 10(-13) ph cm(-2) s(-1) TeV-1 at 1 TeV and a power-law photon index of 2.3 +/- 0.2(stat) +/- 0.3(sys). The luminosity of this source (0.2 to 10 TeV; scaled to distance d = 8 : 7 kpc) is L-VHE similar to 1.6 x 10(34)(d = 8.7 kpc)(2) erg s(-1). The VHE gamma-ray emission is extended and is well fit by a single Gaussian with statistical standard deviation of 0.095 degrees +/- 0.015 degrees. This extension is similar to that of the synchrotron radio nebula G10.0-0.3, which is thought to be powered by LBV 1806-20. The VHE gamma-ray luminosity could be provided by the stellar wind luminosity of LBV 1806-20 by itself and/or the massive star members of Cl* 1806-20. Alternatively, magnetic dissipation (e.g. via reconnection) from SGR 1806-20 can potentially account for the VHE luminosity. The origin and hadronic and/or leptonic nature of the accelerated particles responsible for HESS J1808-204 is not yet clear. If associated with SGR 1806 20, the potentially young age of the magnetar (650 yr) can be used to infer the transport limits of these particles to match the VHE source size. This discovery provides new interest in the potential for high-energy particle acceleration from magnetars, massive stars, and/or stellar clusters.
  •  
99.
  • Abdalla, H., et al. (författare)
  • First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst HESS observations of FRB 150418
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 597
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods. Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results. The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Phi(gamma)(E > 350 GeV) < 1.33 x 10(-8) m(-2) s(-1). Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions. No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0 : 492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5 : 1 x 10(47) erg/s at 99% C.L.
  •  
100.
  • Abdalla, H., et al. (författare)
  • HESS and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259-63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star's circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron t(p) and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc (similar to t(p) 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (similar to t(p) + 30 d) and at phases before the first disc crossing (similar to t(p) - 35 d). The spectral energy range now extends to below 200 GeV and up to similar to 45 TeV. Conclusions. PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 91-100 av 175
Typ av publikation
tidskriftsartikel (173)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (174)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Egberts, K. (171)
Fontaine, G. (159)
Moulin, E. (159)
Khelifi, B. (158)
Kosack, K. (158)
Rudak, B. (158)
visa fler...
Bulik, T. (157)
Boisson, C. (157)
Glicenstein, J. F. (157)
Moderski, R. (157)
de Naurois, M. (157)
Niemiec, J. (157)
Ohm, S. (157)
Quirrenbach, A. (157)
Lohse, T. (156)
Aharonian, F. (156)
Ostrowski, M. (156)
Rieger, F. (156)
Zech, A. (156)
Panter, M. (155)
Schwanke, U. (155)
Sol, H. (155)
Wagner, S. J. (155)
Horns, D. (154)
Marandon, V. (154)
Sahakian, V. (154)
Santangelo, A. (154)
van Eldik, C. (154)
Zdziarski, A. A. (154)
Becherini, Yvonne (153)
Hinton, J. A. (152)
Katarzynski, K. (152)
Komin, Nu. (152)
Renaud, M. (152)
Rowell, G. (152)
Terrier, R. (152)
Hofmann, W. (151)
Marcowith, A. (150)
Steenkamp, R. (150)
Fiasson, A. (149)
Djannati-Atai, A. (148)
Lenain, J. -P (148)
Stawarz, L. (148)
Venter, C. (148)
Pita, S. (146)
Bolmont, J (145)
Brun, F. (145)
Gallant, Y. A. (145)
Kluzniak, W. (145)
Reimer, O. (145)
visa färre...
Lärosäte
Linnéuniversitetet (154)
Stockholms universitet (98)
Kungliga Tekniska Högskolan (23)
Karolinska Institutet (15)
Göteborgs universitet (6)
Uppsala universitet (3)
visa fler...
Lunds universitet (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (175)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (162)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy