SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) "

Sökning: WFRF:(Ehrlén Johan)

  • Resultat 171-180 av 213
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
171.
  •  
172.
  • Valdés, Alicia, et al. (författare)
  • A natural heating experiment : Phenotypic and genotypic responses of plant phenology to geothermal soil warming
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25:3, s. 954-962
  • Tidskriftsartikel (refereegranskat)abstract
    • Under global warming, the survival of many populations of sedentary organisms in seasonal environments will largely depend on their ability to cope with warming in situ by means of phenotypic plasticity or adaptive evolution. This is particularly true in high‐latitude environments, where current growing seasons are short, and expected temperature increases large. In such short‐growing season environments, the timing of growth and reproduction is critical to survival. Here, we use the unique setting provided by a natural geothermal soil warming gradient (Hengill geothermal area, Iceland) to study the response of Cerastium fontanum flowering phenology to temperature. We hypothesized that trait expression and phenotypic selection on flowering phenology are related to soil temperature, and tested the hypothesis that temperature‐driven differences in selection on phenology have resulted in genetic differentiation using a common garden experiment. In the field, phenology was related to soil temperature, with plants in warmer microsites flowering earlier than plants at colder microsites. In the common garden, plants responded to spring warming in a counter‐gradient fashion; plants originating from warmer microsites flowered relatively later than those originating from colder microsites. A likely explanation for this pattern is that plants from colder microsites have been selected to compensate for the shorter growing season by starting development at lower temperatures. However, in our study we did not find evidence of variation in phenotypic selection on phenology in relation to temperature, but selection consistently favoured early flowering. Our results show that soil temperature influences trait expression and suggest the existence of genetically based variation in flowering phenology leading to counter‐gradient local adaptation along a gradient of soil temperatures. An important implication of our results is that observed phenotypic responses of phenology to global warming might often be a combination of short‐term plastic responses and long‐term evolutionary responses, acting in different directions.
  •  
173.
  • Valdés, Alicia, et al. (författare)
  • Caterpillar seed predators mediate shifts in selection on flowering phenology in their host plant
  • 2017
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 98:1, s. 228-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in selection among populations and years has important implications for evolutionary trajectories of populations. Yet, the agents of selection causing this variation have rarely been identified. Selection on the time of reproduction within a season in plants might differ both among populations and among years, and selection can be mediated by both mutualists and antagonists. We investigated if differences in the direction of phenotypic selection on flowering phenology among 20 populations of Gentiana pneumonanthe during 2 yr were related to the presence of the butterfly seed predator Phengaris alcon, and if butterfly incidence was associated with the abundance of the butterfly's second host, Myrmica ants. In plant populations without the butterfly, phenotypic selection favored earlier flowering. In populations where the butterfly was present, caterpillars preferentially attacked early-flowering individuals, shifting the direction of selection to favoring later flowering. Butterfly incidence in plant populations increased with ant abundance. Our results demonstrate that antagonistic interactions can shift the direction of selection on flowering phenology, and suggest that such shifts might be associated with differences in the community context.
  •  
174.
  • Valdes, Alicia, et al. (författare)
  • Contrasting effects of different landscape characteristics on population growth of a perennial forest herb
  • 2014
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 37:3, s. 230-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic changes in landscape structure, such as habitat loss, habitat subdivision and edge increase, can strongly affect the performance of plants, leading to population declines and extinctions. Many studies to date have focused on single characteristics of landscape structure or single life-cycle phases, but they poorly discern the different pathways through which landscape change influences plant population dynamics via different vital rates. In this study, we evaluated the effect of two structural characteristics (habitat quantity and edge length) on vital rates and population growth rates of a perennial forest plant (Primula vulgaris) in a historically managed landscape. Areas with higher amounts of forest habitat had higher population growth rates due to higher recruitment, survival and growth of seedlings, while increased forest edge length was positively associated with population growth rates primarily due to a higher survival of reproductive individuals. Effects were stronger during the first of the two transition intervals studied. The results demonstrate that changes in different landscape structural characteristics may result in opposing effects acting via different vital rates, and highlight the need for integrative analyses to evaluate the effects of rapid landscape transformation on the current and long term plant population dynamics.
  •  
175.
  • Valdés, Alicia, et al. (författare)
  • Direct and plant trait-mediated effects of the local environmental context on butterfly oviposition patterns
  • 2018
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 127:6, s. 825-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in the intensity of plant-animal interactions over different spatial scales is widespread and might strongly influence fitness and trait selection in plants. Differences in traits among plant individuals have been shown to influence variation in interaction intensities within populations, while differences in environmental factors and community composition are shown to be important for variation over larger scales. However, little is still known about the relative importance of the local environmental context vs. plant traits for the outcome of interactions within plant populations. We investigated how oviposition by the seed-predator butterfly Phengaris alcon on its host plant Gentiana pneumonanthe was related to host plant traits and to local environmental variation, as well as how oviposition patterns translated into effects on host plant fruit set. We considered the local environmental context in terms of height of the surrounding vegetation and abundance of the butterfly's second host, Myrmica ants. The probability of oviposition was higher in plants that were surrounded by lower vegetation, and both the probability of oviposition and the number of eggs increased in early-flowering and tall plants with many flowers in the three study populations. Flowering phenology, shoot height and flower production were, in turn, related to higher surrounding vegetation. Myrmica abundance was correlated with vegetation height, but had no effect on oviposition patterns. Oviposition and subsequent seed predation by the caterpillars strongly reduced host plant fruit set. Our results show that plant-animal interactions are context-dependent not only because the context influences the abundance or the behavior of the animal interactor, but also because it influences the expression of plant traits that affect the outcome of the interaction. The results also demonstrate that heterogeneity in environmental conditions at a very local scale can be important for the outcomes of interactions.
  •  
176.
  • Valdés, Alicia, 1982-, et al. (författare)
  • Microclimate influences plant reproductive performance via an antagonistic interaction
  • 2022
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 64, s. 13-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic conditions can influence plant reproduction directly, but also via changes in plant traits, interactions with animals, and the surrounding environment. Such indirect effects can often be complex and involve multiple steps including climatic effects on interacting species, and on the context in which these interactions occur. The joint effects of climatic variation and indirect effects in terms of plant-animal interactions have sometimes been assessed at larger spatial scales. However, less is known about how microclimatic variation affects within-population variation in reproductive performance, in spite of that it is becoming increasingly clear that variation in climatic conditions can occur over very short distances. We studied the direct and indirect effects of microclimate on withinpopulation variation in reproductive performance of the plant Gentiana pneumonanthe in presence of the myrmecophagous and seed predator butterfly Phengaris alcon. We found that microclimatic effects on plant performance were mainly indirect, and that effects of temperature and moisture were interactive. The number of seeds per flower of G. pneumonanthe decreased in cold and moist microsites, and these effects were mediated by an increased oviposition by P. alcon in these microsites. The effects of soil temperature and moisture on the incidence of oviposition and plant performance were mediated by effects on plant phenology, density and phenology of neighbouring host plants, and host ant abundance. Plants that flowered earlier and where host ants were more abundant, and especially plants surrounded by fewer and later-flowering neighbours, produced fewer seeds per flower because of a higher incidence of oviposition. Our results demonstrate that effects of microclimatic variation on plant reproductive performance can be mostly indirect and largely mediated by species interactions. These findings highlight that among individual variation in small-scale environmental conditions within populations can cause variation in individual plant performance through multiple pathways.
  •  
177.
  • Valdés, Alicia, et al. (författare)
  • Plant-animal interactions mediate climatic effects on selection on flowering time
  • 2021
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 102:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Selection on flowering time in plants is often mediated by multiple agents, including climatic conditions and the intensity of mutualistic and antagonistic interactions with animals. These selective agents can have both direct and indirect effects. For example, climate might not only influence phenotypic selection on flowering time directly by affecting plant physiology, but it can also alter selection indirectly by modifying the seasonal activity and relative timing of animals interacting with plants. We used 21 yr of data to identify the drivers of selection on flowering time in the perennial herb Lathyrus vernus, and to examine if antagonistic plant-animal interactions mediate effects of climate on selection. We examined the fitness consequences of vertebrate grazing and predispersal seed predation, and how these effects varied among years and among individuals within years. Although both antagonistic plant-animal interactions had important negative effects on plant fitness, only grazing intensity was consistently related to plant phenology, being higher in early-flowering individuals. Spring temperature influenced the intensity of both plant-animal interactions, as well as the covariance between seed predation and plant phenology. However, only differences in grazing intensity among years were associated with differences in selection on flowering time; the strength of selection for early flowering being stronger in years with lower mean intensity of grazing. Our results illustrate how climatic conditions can influence plant-animal interactions that are important selective agents for plant traits. A broader implication of our findings is that both ecological and evolutionary responses to climatic changes might be indirect, and largely mediated by species interactions.
  •  
178.
  • Valdés, Alicia, et al. (författare)
  • Resource overlap and dilution effects shape host plant use in a myrmecophilous butterfly
  • 2019
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 88:4, s. 649-658
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of consumers on fitness of resource organisms are a complex function of the spatio-temporal distribution of the resources, consumer functional responses and trait preferences, and availability of other resources. The ubiquitous variation in the intensity of species interactions has important consequences for the ecological and evolutionary dynamics of natural populations. Nevertheless, little is known about the processes causing this variation and their operational scales. Here, we examine how variation in the intensity of a consumer-resource interaction is related to resource timing, resource density and abundance of other resources. Using the butterfly consumer Phengaris alcon and its two sequential resources, the host plant Gentiana pneumonanthe and the host ants Myrmica spp., we investigated how butterfly egg-laying depended on focal host plant phenology, density and phenology of neighbouring host plants and host ant abundance. Butterflies preferred plants that simultaneously maximized the availability of both larval resources in time and space, that is, they chose early-flowering plants that were of higher nutritional quality for larvae where host ants were abundant. Both the probability of oviposition and the number of eggs were lower in plant individuals with a high neighbour density than in more isolated plants, and this dilution effect was stronger when neighbours flowered early. Our results show that plant-herbivore interactions simultaneously depend on the spatio-temporal distribution of a focal resource and on the small-scale spatial variation in the abundance of other herbivore resources. Given that consumers have negative effects on fitness and prefer certain timing of the resource organisms, this implies that processes acting at the levels of individuals, populations and communities simultaneously contribute to variation in consumer-mediated natural selection.
  •  
179.
  • Valdés, Alicia, 1982-, et al. (författare)
  • Selection against early flowering in geothermally heated soils is associated with pollen but not prey availability in a carnivorous plant
  • 2022
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 109:11, s. 1693-1701
  • Tidskriftsartikel (refereegranskat)abstract
    • Premise: In high-latitude environments, plastic responses of phenology to increasing spring temperatures allow plants to extend growing seasons while avoiding late frosts. However, evolved plasticity might become maladaptive if climatic conditions change and spring temperatures no longer provide reliable cues for conditions important for fitness. Maladaptative phenological responses might be related to both abiotic factors and mismatches with interacting species. When mismatches arise, we expect selection to favor changes in phenology.Methods: We combined observations along a soil temperature gradient in a geothermally heated area with pollen and prey supplementation experiments and examined how phenotypic selection on flowering time in the carnivorous plant Pinguicula vulgaris depends on soil temperature, and pollen and prey availability.Results: Flowering advanced and fitness decreased with increasing soil temperature. However, in pollen-supplemented plants, fitness instead increased with soil temperature. In heated soils, there was selection favoring later flowering, while earlier flowering was favored in unheated soils. This pattern remained also after artificially increasing pollen and prey availability.Conclusions: Plant–pollinator mismatches can be an important reason why evolved plastic responses of flowering time to increasing spring temperatures become maladaptive under novel environmental conditions, and why there is selection to delay flowering. In our study, selection for later flowering remained after artificially increasing pollen availability, suggesting that abiotic factors also contribute to the observed selection. Identifying the factors that make evolved phenological responses maladaptive under novel conditions is fundamental for understanding and predicting evolutionary responses to climate warming.
  •  
180.
  • Valdés, Alicia, 1982-, et al. (författare)
  • Spring temperature drives phenotypic selection on plasticity of flowering time
  • 2023
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - 0962-8452 .- 1471-2954. ; 290:2006
  • Tidskriftsartikel (refereegranskat)abstract
    • In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions influence the optimal plastic response. Using 22 years of field observations for the perennial forest herb Lathyrus vernus, we assessed phenotypic selection on among-individual variation in reaction norms of flowering time to spring temperature, and examined if among-year variation in selection on plasticity was associated with spring temperature conditions. We found significant among-individual variation in mean flowering time and flowering time plasticity, and that plants that flowered earlier also had a more plastic flowering time. Selection favoured individuals with an earlier mean flowering time and a lower thermal plasticity of flowering time. Less plastic individuals were more strongly favoured in colder springs, indicating that spring temperature influenced optimal flowering time plasticity. Our results show how selection on plasticity can be linked to climatic conditions, and illustrate how we can understand and predict evolutionary responses of organisms to changing environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 171-180 av 213
Typ av publikation
tidskriftsartikel (140)
annan publikation (39)
doktorsavhandling (30)
forskningsöversikt (2)
proceedings (redaktörskap) (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (143)
övrigt vetenskapligt/konstnärligt (69)
populärvet., debatt m.m. (1)
Författare/redaktör
Ehrlén, Johan (171)
Ågren, Jon (27)
Wiklund, Christer (24)
Hylander, Kristoffer (21)
Dahlgren, Johan P (21)
Ehrlén, Johan, 1956- (19)
visa fler...
Ehrlén, Johan, Profe ... (18)
Gotthard, Karl (12)
Posledovich, Diana (12)
Tack, Ayco J. M. (11)
Lehtilä, Kari (11)
Toftegaard, Tenna (11)
Eriksson, Ove (9)
Toräng, Per (8)
Garcia, Maria B. (8)
Meineri, Eric (7)
van Dijk, Laura J. A ... (7)
Valdés, Alicia (7)
Merinero, Sonia (6)
Arvanitis, Leena (6)
Crone, Elizabeth E. (6)
Madec, Camille (6)
Humphreys, Aelys M. (5)
Morris, William F. (5)
Hedenäs, Lars (5)
Marteinsdottir, Bryn ... (5)
Bisang, Irene (5)
Fogelström, Elsa (5)
Dahlgren, Johan (5)
Leimu, Roosa (5)
König, Malin A. E. (5)
Luoto, Miska (4)
De Frenne, Pieter (4)
Kolb, Annette (4)
Hambäck, Peter A. (4)
Ramula, Satu (4)
Münzbergova, Zuzana (4)
Knight, Tiffany M. (4)
Buckley, Yvonne M. (4)
Wardle, Glenda M. (4)
Christiansen, Ditte ... (4)
Jones, Owen R. (4)
Dahlberg, C. Johan, ... (4)
Dahlgren, Johan Pett ... (4)
von Zeipel, Hugo (4)
Greiser, Caroline (4)
Syrjänen, Kimmo (4)
Valdés, Alicia, 1982 ... (4)
Mildén, Mikael (4)
Navarro-Cano, Jose A ... (4)
visa färre...
Lärosäte
Stockholms universitet (183)
Uppsala universitet (39)
Södertörns högskola (10)
Sveriges Lantbruksuniversitet (6)
Naturhistoriska riksmuseet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Umeå universitet (1)
Högskolan i Gävle (1)
visa färre...
Språk
Engelska (200)
Odefinierat språk (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (178)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy