SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enroth Stefan) "

Sökning: WFRF:(Enroth Stefan)

  • Resultat 21-30 av 120
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  •  
22.
  • Yang, Zhijian, et al. (författare)
  • Genetic Landscape of the ACE2 Coronavirus Receptor
  • 2022
  • Ingår i: Circulation. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7322 .- 1524-4539. ; 30:SUPPL 1, s. 36-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood.Methods: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data.Results: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells.Conclusions: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.
  •  
23.
  •  
24.
  • Agarwal, Prasoon, et al. (författare)
  • Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:6, s. 6809-6923
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM.
  •  
25.
  • Agarwal, Prasoon, et al. (författare)
  • Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs
  • 2016
  • Ingår i: Cell Cycle. - : Informa UK Limited. - 1538-4101 .- 1551-4005. ; 15:12, s. 1558-1571
  • Tidskriftsartikel (refereegranskat)abstract
    • CGGBP1 (CGG triplet repeat-binding protein 1) regulates cell proliferation, stress response,cytokinesis, telomeric integrity and transcription. It could affect these processes by modulatingtarget gene expression under different conditions. Identification of CGGBP1-target genes andtheir regulation could reveal how a transcription regulator affects such diverse cellular processes.Here we describe the mechanisms of differential gene expression regulation by CGGBP1 inquiescent or growing cells. By studying global gene expression patterns and genome-wide DNAbindingpatterns of CGGBP1, we show that a possible mechanism through which it affects theexpression of RNA Pol II-transcribed genes in trans depends on Alu RNA. We also show that itregulates Alu transcription in cis by binding to Alu promoter. Our results also indicate thatpotential phosphorylation of CGGBP1 upon growth stimulation facilitates its nuclear retention,Alu-binding and dislodging of RNA Pol III therefrom. These findings provide insights into howAlu transcription is regulated in response to growth signals.
  •  
26.
  • Agarwal, Prasoon, et al. (författare)
  • The epigenomic map of multiple myeloma reveals the importance of Polycomb gene silencing for the malignancy
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Multiple myeloma (MM) is characterized by accumulation of post-germinal center, isotype switched, long-living plasma cells with retained proliferation capacity within the bone marrow. MM is highly heterogeneous and remains fatal. This heterogeneity has hampered identification of a common underlying mechanism for disease establishment and the development of targeted therapy. We recently provided proof-of-principle that gene silencing associated with H3K27me3 contributes to the malignancy of MM. Here we present the first epigenomic map of MM for H3K27me3 and H3K4me3 derived by ChIP- and RNA sequencing from freshly-isolated bone marrow plasma cells from four patients. We compile lists of targets common among the patients as well as unique to MM when compared with PBMCs. Indicating the clinical relevance of our findings, we find increased silencing of H3K27me3 targets with disease progression and in patients presenting with a poor prognosis. Bivalent genes further significantly correlated to under-expressed genes in MM and were unique to MM when compared to PBMCs. Furthermore, bivalent genes, unlike H3K27me3 targets, significantly associated with transcriptional activation upon Polycomb inhibition indicating a potential for drug targeting. Thus, we suggest that gene silencing by Polycomb plays an important role in the development of the malignant phenotype of the MM cell during tumor progression.
  •  
27.
  • Ahsan, Muhammad, et al. (författare)
  • The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases.
  • 2017
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units' change per 1% change in DNA methylation levels and up to four standard units' change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease.
  •  
28.
  • Ameur, Adam, et al. (författare)
  • CanvasDB : a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects
  • 2014
  • Ingår i: Database. - : Oxford University Press (OUP). - 1758-0463. ; , s. bau098-
  • Tidskriftsartikel (refereegranskat)abstract
    • CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome-(WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server.
  •  
29.
  • Ameur, Adam, et al. (författare)
  • Genetic Adaptation of Fatty-Acid Metabolism : A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:5, s. 809-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes-defined by 28 closely linked SNPs across 38.9 kb-that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease.
  •  
30.
  • Ameur, Adam, et al. (författare)
  • The LCB Data Warehouse
  • 2006
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 22:8, s. 1024-1026
  • Tidskriftsartikel (refereegranskat)abstract
    • The Linnaeus Centre for Bioinformatics Data Warehouse (LCB-DWH) is a web-based infrastructure for reliable and secure microarray gene expression data management and analysis that provides an online service for the scientific community. The LCB-DWH is an effort towards a complete system for storage (using the BASE system), analysis and publication of microarray data. Important features of the system include: access to established methods within R/Bioconductor for data analysis, built-in connection to the Gene Ontology database and a scripting facility for automatic recording and re-play of all the steps of the analysis. The service is up and running on a high performance server. At present there are more than 150 registered users.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 120
Typ av publikation
tidskriftsartikel (108)
annan publikation (7)
doktorsavhandling (3)
rapport (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (102)
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Enroth, Stefan (63)
Enroth, Stefan, 1976 ... (50)
Gyllensten, Ulf (48)
Johansson, Åsa (39)
Komorowski, Jan (25)
Gyllensten, Ulf B. (24)
visa fler...
Wadelius, Claes (20)
Lind, Lars (18)
Wilson, James F. (18)
Hayward, Caroline (15)
Ameur, Adam (13)
Deary, Ian J (13)
Rudan, Igor (12)
Harris, Sarah E (12)
Zeggini, Eleftheria (12)
Gieger, Christian (11)
Strachan, David P (10)
Wareham, Nicholas J. (10)
Langenberg, Claudia (10)
Vitart, Veronique (10)
Jarvelin, Marjo-Riit ... (9)
Andersson, Robin (9)
Zhao, Jing Hua (9)
Gudnason, Vilmundur (9)
Tobin, Martin D (9)
Olovsson, Matts, 195 ... (8)
Campbell, Harry (8)
van Duijn, Cornelia ... (8)
Kähönen, Mika (8)
Wallerman, Ola (8)
Wain, Louise V (8)
Harris, Tamara B (8)
Porteous, David J (8)
Uitterlinden, André ... (8)
Raitakari, Olli T (7)
Imboden, Medea (7)
Ingelsson, Erik (7)
Lehtimäki, Terho (7)
Ek, Weronica E (7)
Schulz, Holger (7)
Stålberg, Karin (7)
Mahajan, Anubha (7)
Gustafsson, Stefan (7)
Wright, Alan F. (7)
Rada-Iglesias, Alvar ... (7)
Moustakas, Aristidis (7)
Huffman, Jennifer E (7)
Liu, Yongmei (7)
Hall, Ian P (7)
Campbell, Archie (7)
visa färre...
Lärosäte
Uppsala universitet (110)
Karolinska Institutet (26)
Göteborgs universitet (19)
Lunds universitet (11)
Umeå universitet (9)
Stockholms universitet (9)
visa fler...
Kungliga Tekniska Högskolan (3)
Handelshögskolan i Stockholm (1)
Chalmers tekniska högskola (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (118)
Svenska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (74)
Naturvetenskap (25)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy