SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forsberg Bertil) srt2:(2015-2019)"

Search: WFRF:(Forsberg Bertil) > (2015-2019)

  • Result 71-80 of 133
Sort/group result
   
EnumerationReferenceCoverFind
71.
  • Olsson, David, et al. (author)
  • Traffic pollution at the home address and pregnancy outcomes in Stockholm, Sweden
  • 2015
  • In: BMJ Open. - : BMJ. - 2044-6055. ; 5:8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: For the past two decades, several studies have reported associations between elevated levels of ambient air pollution and adverse pregnancy outcomes, although with varying conclusions.OBJECTIVES: To examine possible associations between the traffic pollution situation at the home address, for women who did not change address during pregnancy, and three types of pregnancy outcomes: spontaneous preterm delivery, children born small for gestational age (SGA) and pregnancy-induced hypertensive disorders.METHODS: We used data for the Greater Stockholm Area from the Swedish Medical Birth Register to construct a cohort based on all pregnancies conceived between July 1997 and March 2006, n=100 190. The pregnancy average nitrogen oxide, NOx, levels and annual mean daily vehicles at the home address were used as exposure variables. Mixed-model logistic regression was performed to assess any associations between exposure and outcome.RESULTS: There was an association between elevated traffic pollution exposure during pregnancy and pregnancy-induced hypertensive disorders. A 10 µg/m(3) increase in the pregnancy average NOx level at the home address resulted in an OR of 1.17 (95% CI 1.10 to 1.26). The 2nd to 4th quartiles of NOx were all associated with an increased risk of SGA, but there was no difference in the risk estimate among the higher quartiles. There was a tendency of a higher risk of spontaneous preterm delivery in relation to higher levels of NOx. There was no evidence of an association between vehicle flow, the cruder indicator of traffic pollution, and the studied outcomes in this study.CONCLUSIONS: In this large cohort, there was a fairly strong association between vehicle exhaust levels at the home address and pregnancy-induced hypertensive disorders, after adjustment for important risk factors.
  •  
72.
  • Olstrup, Henrik, et al. (author)
  • A Multi-Pollutant Air Quality Health Index (AQHI) Based on Short-Term Respiratory Effects in Stockholm, Sweden
  • 2019
  • In: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 16:1
  • Journal article (peer-reviewed)abstract
    • In this study, an Air Quality Health Index (AQHI) for Stockholm is introduced as a tool to capture the combined effects associated with multi-pollutant exposure. Public information regarding the expected health risks associated with current or forecasted concentrations of pollutants and pollen can be very useful for sensitive persons when planning their outdoor activities. For interventions, it can also be important to know the contribution from pollen and the specific air pollutants, judged to cause the risk. The AQHI is based on an epidemiological analysis of asthma emergency department visits (AEDV) and urban background concentrations of NOx, O-3, PM10 and birch pollen in Stockholm during 2001-2005. This analysis showed per 10 mu gm(-3) increase in the mean of same day and yesterday an increase in AEDV of 0.5% (95% CI: -1.2-2.2), 0.3% (95% CI: -1.4-2.0) and 2.5% (95% CI: 0.3-4.8) for NOx, O-3 and PM10, respectively. For birch pollen, the AEDV increased with 0.26% (95% CI: 0.18-0.34) for 10 pollen grainsm(-3). In comparison with the coefficients in a meta-analysis, the mean values of the coefficients obtained in Stockholm are smaller. The mean value of the risk increase associated with PM10 is somewhat smaller than the mean value of the meta-coefficient, while for O-3, it is less than one fifth of the meta-coefficient. We have not found any meta-coefficient using NOx as an indicator of AEDV, but compared to the mean value associated with NO2, our value of NOx is less than half as large. The AQHI is expressed as the predicted percentage increase in AEDV without any threshold level. When comparing the relative contribution of each pollutant to the total AQHI, based on monthly averages concentrations during the period 2015-2017, there is a tangible pattern. The AQHI increase associated with NOx exhibits a relatively even distribution throughout the year, but with a clear decrease during the summer months due to less traffic. O-3 contributes to an increase in AQHI during the spring. For PM10, there is a significant increase during early spring associated with increased suspension of road dust. For birch pollen, there is a remarkable peak during the late spring and early summer during the flowering period. Based on monthly averages, the total AQHI during 2015-2017 varies between 4 and 9%, but with a peak value of almost 16% during the birch pollen season in the spring 2016. Based on daily mean values, the most important risk contribution during the study period is from PM10 with 3.1%, followed by O-3 with 2.0%.
  •  
73.
  • Olstrup, Henrik, 1978- (author)
  • Air pollution and health – Indicators, trends and impacts
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis focuses on some of the limitations and difficulties that exist when it comes to quantifying the human health effects that arise as a result of air pollution exposure. The following four issues are particularly analysed and discussed: 1) The measurement techniques used for carbonaceous particles and their lack of consistency; 2) Do the health risks associated with exposure to PM10 depend on the content of elemental carbon in the aerosol?; 3) Trends in air pollutants and the health effects that arise as a result of changed exposure to the measured pollutants; 4) The associations between the measured concentrations of different air pollutants in Stockholm and the daily number deaths; 5) Air quality indicators and health outcomes as basis for an air quality health index (AQHI).The method that has been used is largely based on empirical data analysis, where further statistical processing has been used in order to clarify the scientific issues. The overall conclusions are the following: 1) The health impact assessments associated with exposure to carbonaceous particles would benefit from the introduction of a more uniform measurement technique in order to get more consistent and reliable results; 2) The health risks associated with exposure to PM10 are dependent on the content of elemental carbon; 3) The life expectancy increase associated with decreasing NOx trends during 1990–2015 in Stockholm, Gothenburg and Malmo make up as much as about 20 % of the total gain in life expectancy during this period, which clearly shows the beneficial effects related to decreased exposure; 4) The associations between daily mortality and the concentrations of O3 and PM2.5-10 in Stockholm are statistically significant, which does not apply to the exhaust-related pollutants, possibly reflecting behavioural factors affecting the degree of exposure; 5) In comparison with the currently used air quality index (AQI), the air quality health index (AQHI) is a more useful tool in order to address the short-term health effects associated with multi-pollutant exposure to NOx, O3, PM10 and birch pollen.We hope that these findings will be useful from a policy point of view. Introducing a more consistent measurement technique for soot particles would be beneficial in assessing the health effects related to exposure to these particles. The increase in life expectancy associated with decreasing NOx trends shows the benefits from a public health perspective when it comes to introducing emission-reducing measures from traffic. The AQHI would be beneficial to implement in legislation, as it is based on several pollutants, which means that the cumulative health effects associated exposure to several different air pollutants are accounted for.  
  •  
74.
  • Olstrup, Henrik, 1978-, et al. (author)
  • Association between Mortality and Short-Term Exposure to Particles, Ozone and Nitrogen Dioxide in Stockholm, Sweden
  • 2019
  • In: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 16:6
  • Journal article (peer-reviewed)abstract
    • In this study, the effects on daily mortality in Stockholm associated with short-term exposure to ultrafine particles (measured as number of particles with a diameter larger than 4 nm, PNC4), black carbon (BC) and coarse particles (PM2.5–10) have been compared with the effects from more common traffic-pollution indicators (PM10, PM2.5 and NO2) and O3 during the period 2000–2016. Air pollution exposure was estimated from measurements at a 20 m high building in central Stockholm. The associations between daily mortality lagged up to two days (lag 02) and the different air pollutants were modelled by using Poisson regression. The pollutants with the strongest indications of an independent effect on daily mortality were O3, PM2.5–10 and PM10. In the single-pollutant model, an interquartile range (IQR) increase in O3 was associated with an increase in daily mortality of 2.0% (95% CI: 1.1–3.0) for lag 01 and 1.9% (95% CI: 1.0–2.9) for lag 02. An IQR increase in PM2.5–10 was associated with an increase in daily mortality of 0.8% (95% CI: 0.1–1.5) for lag 01 and 1.1% (95% CI: 0.4–1.8) for lag 02. PM10 was associated with a significant increase only at lag 02, with 0.8% (95% CI: 0.08–1.4) increase in daily mortality associated with an IQR increase in the concentration. NO2 exhibits negative associations with mortality. The significant excess risk associated with O3 remained significant in two-pollutant models after adjustments for PM2.5–10, BC and NO2. The significant excess risk associated with PM2.5–10 remained significant in a two-pollutant model after adjustment for NO2. The significantly negative associations for NO2 remained significant in two-pollutant models after adjustments for PM2.5–10, O3 and BC. A potential reason for these findings, where statistically significant excess risks were found for O3, PM2.5–10 and PM10, but not for NO2, PM2.5, PNC4 and BC, is behavioral factors that lead to misclassification in the exposure. The concentrations of O3 and PM2.5–10 are in general highest during sunny and dry days during the spring, when exposure to outdoor air tend to increase, while the opposite applies to NO2, PNC4 and BC, with the highest concentrations during the short winter days with cold weather, when people are less exposed to outdoor air.
  •  
75.
  • Olstrup, Henrik, et al. (author)
  • The Use of Carbonaceous Particle Exposure Metrics in Health Impact Calculations
  • 2016
  • In: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 13:3
  • Journal article (peer-reviewed)abstract
    • Combustion-related carbonaceous particles seem to be a better indicator of adverse health effects compared to PM2.5 and PM10. Historical studies are based on black smoke (BS), but more recent studies use absorbance (Abs), black carbon (BC) or elemental carbon (EC) as exposure indicators. To estimate health risks based on BS, we review the literature regarding the relationship between Abs, BS, BC and EC. We also discuss the uncertainties associated with the comparison of relative risks (RRs) based on these conversions. EC is reported to represent a proportion between 5.2% and 27% of BS with a mean value of 12%. Correlations of different metrics at one particular site are higher than when different sites are compared. Comparing all traffic, urban and rural sites, there is no systematic site dependence, indicating that other properties of the particles or errors affect the measurements and obscure the results. It is shown that the estimated daily mortality associated with short-term levels of EC is in the same range as PM10, but this is highly dependent on the EC to BS relationship that is used. RRs for all-cause mortality associated with short-term exposure to PM10 seem to be higher at sites with higher EC concentrations, but more data are needed to verify this.
  •  
76.
  • Olstrup, Henrik, et al. (author)
  • Trends in air pollutants and health impacts in three Swedish cities over the past three decades
  • 2018
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:21, s. 15705-15723
  • Journal article (peer-reviewed)abstract
    • Air pollution concentrations have been decreasing in many cities in the developed countries. We have estimated time trends and health effects associated with exposure to NOx, NO2, O-3, and PM10 (particulate matter) in the Swedish cities Stockholm, Gothenburg, and Malmo from the 1990s to 2015. Trend analyses of concentrations have been performed by using the Mann-Kendall test and the Theil-Sen method. Measured concentrations are from central monitoring stations representing urban background levels, and they are assumed to indicate changes in long-term exposure to the population. However, corrections for population exposure have been performed for NOx, O-3, and PM10 in Stockholm, and for NOx in Gothenburg. For NOx and PM10, the concentrations at the central monitoring stations are shown to overestimate exposure when compared to dispersion model calculations of spatially resolved, population-weighted exposure concentrations, while the reverse applies to O-3. The trends are very different for the pollutants that are studied; NOx and NO2 have been decreasing in all cities, O-3 exhibits an increasing trend in all cities, and for PM10, there is a slowly decreasing trend in Stockholm, a slowly increasing trend in Gothenburg, and no significant trend in Malmo. Trends associated with NOx and NO2 are mainly attributed to local emis-sion reductions from traffic. Long-range transport and local emissions from road traffic (non-exhaust PM emissions) and residential wood combustion are the main sources of PM10. For O-3, the trends are affected by long-range transport, and there is a net removal of O-3 in the cities. The increasing trends are attributed to decreased net removal, as NOx emissions have been reduced. Health effects in terms of changes in life expectancy are calculated based on the trends in exposure to NOx, NO2, O-3, and PM10 and the relative risks associated with exposure to these pollutants. The decreased levels of NO x are estimated to increase the life expectancy by up to 11 months for Stockholm and 12 months for Gothenburg. This corresponds to up to one-fifth of the total increase in life expectancy (5470 months) in the cities during the period of 1990-2015. Since the increased concentrations in O-3 have a relatively small impact on the changes in life expectancy, the overall net effect is increased life expectancies in the cities that have been studied.
  •  
77.
  • Orru, Hans, et al. (author)
  • Assessment of long-term health impacts of air quality with different guideline values for NOX in the planned by-pass tunnel Förbifart Stockholm
  • 2016
  • Reports (other academic/artistic)abstract
    • Bland annat för att förbättra förbindelserna mellan de norra och södra länsdelarna och öka framkomligheten på infartsleder mot Stockholm planeras en 21 km lång förbifart i nord-sydlig sträckning, varav cirka 18 km planerad gå i tunnel. Denna nya led, Förbifart Stockholm, förväntas ge förutsättningar för utveckling och minska trafikbelastningen i områdets centrala delar. Samtidigt visar tidigare analyser att de som kommer att färdas i tunneln kan bli utsatta för höga koncentrationer av trafikföroreningar. Denna rapport redovisar resultat av forskning som är beställd och finansierad av Trafikverket.För att styra luftkvaliteten i den planerade tunneln har användandet av riktvärden för luftföroreningshalten i tunneln föreslagits, och ett preliminärt förslag från Trafikverket presenterats vid olika möten. Denna studie syftar till att bedöma de potentiella hälsokonsekvenserna som kan förväntas med olikt strängt riktvärde för trafikföroreningar indikerat med halten av kvävoxider, NOx, (1000, 2000, 3000 och 4000 mikrogram/m3 som maximalt timmedelvärde för tunnelsystemet).Exponeringen från tunnelpassager uppskattas baserat på de årliga genomsnittliga NOX-halterna i tunneln, tillbringat tid i tunneln och antal trafikanter. I underlaget beräknas halterna för olikadelar av tunneln och olika tid på dygnet. Hälsokonsekvenserna av förändrad exponering har beräknats med etablerade metoder och beräkningsprogrammet AirQ Plus utvecklat av WHO.På grund av stora trafikflöden och ekonomiska/tekniska begränsningar för ventilationen kan luftföroreningskoncentrationerna i tunneln bli mycket högre än i andra trafikmiljöer. Med minimal ventilation och maximala trafikmängder under rusningstid kan timmedelvärdet för NOx bli till 3500 mikrogram/m3 och även när maximal ventilation skulle tillämpas, beräknas årsmedelvärdet av dygnets högsta timmedelvärde längs en länk i tunneln bli 1789 mikrogram/m3. Således är det i princip omöjligt att klara riktvärdet 1000 mikrogram/m3 överallt i tunnelsystemet. Exponeringen skulle bli lägst vid maximal ventilation, vilket beräknas resultera i 22,2 (95% konfidensintervall: 16.8-30.1) förtida dödsfall per år, motsvarande 480,4 (95% KI: 364,1-650,6) förlorade levnadsår (förutsatt att resenärerna utgörs av åldersgruppen 30-74 år). Om riktvärdet skulle vara 2000 mikrogram/m3, beräknas exponeringen med samma åldersgrupp resultera i 35,2 (95% KI: 26,7-47,6) förtida dödsfall per år, motsvarande med 760.9 (95% KI: 480,4-650,6) förlorade levnadsår.Bland olika tunnellänkar beräknas den största exponeringen på länk 5N, där 28,6-37,2% (beroende på riktvärdesscenario) av de totala hälsokonsekvenserna kan genereras. Länken 3N har hög NOX-koncentration, stort antal passagerare och lång exponeringstid. För de separata länkarna kan skillnaderna i exponering mellan riktvärdesscenarier också i hög grad variera beroende på möjligheten att ventilera: medan skillnaderna vara stora för länk 5N, var de ganska små för länk 7N.Om vi jämför dessa resultat med tidigare beräknad positiv effekt på lokalbefolkningens hälsa beroende på minskad exponering för luftföroreningar (årligen förväntas 23,7 (95% KI: 17,7-32,3) färre förtida dödsfall), är det endast med de mest gynnsamma antagandena såsom färre äldre personer som använder tunneln och med nu beräknad maximal ventilation som tunneln kan ge mindre hälsoeffekter jämfört med alternativet trafik ovan jord längs E4. I alla andra fall förväntas hälsoeffekterna med tunneln i Förbifart Stockholm totalt bli högre. Exponeringen i tunneln väntas här bli något högre jämfört med föregående analys på grund av förbättrad modellering av luftföroreningshalter i olika delar av tunneln, inkluderande även ramperna, samt i konsekvensbedömningen förväntat högre antal passager för vissa tunnellänkar.
  •  
78.
  • Orru, Hans, et al. (author)
  • Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, population and greenhouse gas emission
  • 2019
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:7
  • Journal article (peer-reviewed)abstract
    • Climate change is expected to increase to extreme temperatures and lead to more intense formation of near-surface ozone. Higher temperatures can cause heat stress and ozone is a highly oxidative pollutant; both increase cardiorespiratory mortality. Using greenhouse gas and ozone precursor emission scenarios, global and regional climate and chemistry-transport models, epidemiological data, and population projections, we projected ozone- and heat-related health risks under a changing climate. European near-surface temperature was modelled with the regional climate model (RCA4), forced by the greenhouse gas emission scenario RCP4.5 and the global climate model EC-EARTH, and near-surface ozone was modelled with the Multi-scale Atmospheric Transport and Chemistry (MATCH) model. Two periods were compared: recent climate in 1991-2000 and future climate in 2046-2055, projecting around a 2 degrees increase in global temperatures by that time. Projections of premature mortality considered future climate, future population, and future emissions separately and jointly to understand the relative importance of their contributions. Ozone currently causes 55 000 premature deaths annually in Europe due to long-term exposure, including a proportion of the estimated 26 000 deaths per year due to short-term exposures. When only taking into account the impact of a changing climate, up to an 11% increase in ozone-associated mortality is expected in some countries in Central and Southern Europe in 2050. However, projected decreases in ozone precursor emissions are expected to result in a decrease in ozone-related mortality (-30% as EUaverage). Due to aging and increasingly susceptible populations, the decrease in 2050 would be smaller, up to -24%. During summer months, ozone risks could combine with increasing temperatures, especially during the hottest periods and in densely populated urban areas. While the heat burden is currently of the same order of magnitude as ozone, due to increasing temperatures and decreasing ozone precursor emissions, heat-related mortality could be twice as large as ozone-related mortality in 2050.
  •  
79.
  • Orru, Hans, et al. (author)
  • Potential health impacts of changes in air pollution exposure associated with moving traffic into a road tunnel
  • 2015
  • In: Journal of Exposure Science and Environmental Epidemiology. - : Springer Science and Business Media LLC. - 1559-0631 .- 1559-064X. ; 25:5, s. 524-531
  • Journal article (peer-reviewed)abstract
    • A planned 21 km bypass (18 km within a tunnel) in Stockholm is expected to reduce ambient air exposure to traffic emissions, but same time tunnel users could be exposed to high concentrations of pollutants. For the health impacts calculations in 2030, the change in annual ambient NOX and PM10 exposure of the general population was modelled in 100 x 100 m(2) grids for Greater Stockholm area. The tunnel exposure was estimated based on calculated annual average NOX concentrations, time spent in tunnel and number of tunnel users. For the general population, we estimate annually 23.7 (95% Cl: 17.7-32.3) fewer premature deaths as ambient concentrations are reduced. At the same time, tunnel users will be exposed to NOX levels up to 2000 mu g/m(-3). Passing through the whole tunnel two times on working days would correspond to an additional annual NOX exposure of 9.6 mu g/m(3). Assuming that there will be similar to 55,000 vehicles daily each way and 1.3 persons of 30-74 years of age in each vehicle, we estimate the tunnel exposure to result in 20.6 (95% Cl: 14.1-25.6) premature deaths annually. If there were more persons per vehicle, or older and vulnerable people travelling, or tunnel dispersion conditions worsen, the adverse effect would become larger.
  •  
80.
  • Orru, Hans, et al. (author)
  • The interplay of climate change and air pollution on health
  • 2017
  • In: Current environmental health reports. - : Springer. - 2196-5412. ; 4:4, s. 504-513
  • Journal article (peer-reviewed)abstract
    • Purpose of review: Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research.Recent findings: Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions.Summary: This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 71-80 of 133
Type of publication
journal article (119)
reports (8)
doctoral thesis (4)
conference paper (1)
research review (1)
Type of content
peer-reviewed (104)
other academic/artistic (28)
pop. science, debate, etc. (1)
Author/Editor
Forsberg, Bertil (125)
Janson, Christer (44)
Gislason, Thorarinn (17)
Heinrich, Joachim (17)
Svanes, Cecilie (16)
Gislason, T. (15)
show more...
Marcon, Alessandro (14)
Oudin, Anna (14)
Jogi, Rain (13)
Malinovschi, Andrei, ... (13)
Leynaert, Benedicte (12)
Pin, Isabelle (12)
Probst-Hensch, Nicol ... (12)
Olsson, David (12)
Torén, Kjell, 1952 (11)
Bråbäck, Lennart (11)
Brunekreef, Bert (11)
Sigsgaard, Torben (11)
Sigsgaard, T. (11)
Johansson, Christer (10)
Svanes, C. (10)
de Hoogh, Kees (10)
Lindberg, Eva (10)
Gasparrini, Antonio (10)
Oudin Åström, Daniel (10)
Johannessen, A. (9)
Jogi, R. (9)
Schlunssen, V. (9)
Jarvis, D. (9)
Johannessen, Ane (9)
Jarvis, Debbie (9)
Heinrich, J. (8)
Accordini, Simone (8)
Carsin, Anne-Elie (8)
Schwartz, Joel (8)
Bell, Michelle L (8)
Guo, Yuming (8)
Hashizume, Masahiro (8)
Honda, Yasushi (8)
Holm, Mathias, 1969 (7)
Pin, I. (7)
Tsai, Ming-Yi (7)
Bono, Roberto (7)
Hoek, Gerard (7)
Norbäck, Dan (7)
Middelveld, R (7)
Zock, J. P. (7)
Åström, Christofer, ... (7)
Armstrong, Ben (7)
Sera, Francesco (7)
show less...
University
Umeå University (126)
Uppsala University (48)
University of Gothenburg (30)
Karolinska Institutet (26)
Stockholm University (13)
Lund University (8)
show more...
Swedish Environmental Protection Agency (4)
The Swedish School of Sport and Health Sciences (3)
Jönköping University (1)
Mid Sweden University (1)
Högskolan Dalarna (1)
Swedish Museum of Natural History (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (123)
Swedish (10)
Research subject (UKÄ/SCB)
Medical and Health Sciences (125)
Natural sciences (19)
Engineering and Technology (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view