SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hagenaars S) "

Sökning: WFRF:(Hagenaars S)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
12.
  • Sung, Yun Ju, et al. (författare)
  • A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 28:15, s. 2615-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene–smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene–smoking interaction analysis and 38 were newly identified (P < 5 × 10−8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
  •  
13.
  •  
14.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
15.
  •  
16.
  • Yang, Q., et al. (författare)
  • Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells.
  • 2006
  • Ingår i: Cancer immunology, immunotherapy : CII. - : Springer Science and Business Media LLC. - 0340-7004 .- 1432-0851. ; 55:6, s. 699-707
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that adoptively transferred, IL-2-activated natural killer (A-NK) cells are able to eliminate well-established B16-F10.P1 melanoma lung metastases. However, some B16-F10.P1 lung metastases were resistant to infiltration by the A-NK cells and also resistant to the A-NK cell treatment. The infiltration-resistant (I-R) B16-F10.P1 metastases had a unique "compact" morphology compared to the "loose" morphology of the infiltration-permissive (I-P) metastases. Here, we show that I-P loose tumors and I-R compact tumors are also found in lung metastases of mouse Lewis lung carcinoma (3LL), MCA-102 sarcoma, and MC38 colon carcinoma as well as rat MADB106 mammary carcinoma origin. Furthermore, the infiltration resistance of the compact tumors is not restricted to A-NK cells, since PHA and IL-2 stimulated CD8+ T-cells (T-LAK cells) also infiltrated the compact tumors poorly. Analyses of tumors for extracellular matrix (ECM) components and PECAM-1(+) vasculature, revealed that the I-R lesions are hypovascularized and contain very little laminin, collagen and fibronectin. In contrast, the I-P loose tumors are well-vascularized and they contain high amounts of ECM components. Interestingly, the distribution pattern of ECM components in the I-P loose tumors is almost identical to that of the normal lung tissue, indicating that these tumors develop around the alveolar walls which provide the loose tumors with both a supporting tissue and a rich blood supply. In conclusion, tumor infiltration by activated NK and T cells correlates with the presence of ECM components and PECAM-1(+) vasculature in the malignant tissue. Thus, analysis of the distribution of ECM and vasculature in tumor biopsies may help select patients most likely to benefit from cellular adoptive immunotherapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy