SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karikari Thomas) "

Sökning: WFRF:(Karikari Thomas)

  • Resultat 61-70 av 130
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Hill, E., et al. (författare)
  • Truncating tau reveals different pathophysiological actions of oligomers in single neurons
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau protein is involved in maintaining neuronal structure. In Alzheimer's disease, small numbers of tau molecules can aggregate to form oligomers. However, how these oligomers produce changes in neuronal function remains unclear. Previously, oligomers made from full-length human tau were found to have multiple effects on neuronal properties. Here we have cut the tau molecule into two parts: the first 123 amino acids and the remaining 124-441 amino acids. These truncated tau molecules had specific effects on neuronal properties, allowing us to assign the actions of full-length tau to different regions of the molecule. We identified one key target for the effects of tau, the voltage gated sodium channel, which could account for the effects of tau on the action potential. By truncating the tau molecule, we have probed the mechanisms that underlie tau dysfunction, and this increased understanding of tau's pathological actions will build towards developing future tau-targeting therapies. Hill et al. examine the effects of full-length or truncated human recombinant tau on the excitability of hippocampal pyramidal neurons in mice. Their results suggest that effects seen with full-length tau oligomers can be dissected apart using tau truncations and highlights a tau-mediated alteration in voltage-gated sodium channel currents.
  •  
62.
  • Hill, E., et al. (författare)
  • Understanding the Pathophysiological Actions of Tau Oligomers: A Critical Review of Current Electrophysiological Approaches
  • 2020
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau is a predominantly neuronal protein that is normally bound to microtubules, where it acts to modulate neuronal and axonal stability. In humans, pathological forms of tau are implicated in a range of diseases that are collectively known as tauopathies. Kinases and phosphatases are responsible for maintaining the correct balance of tau phosphorylation to enable axons to be both stable and labile enough to function properly. In the early stages of tauopathies, this balance is interrupted leading to dissociation of tau from microtubules. This leaves microtubules prone to damage and phosphorylated tau prone to aggregation. Initially, phosphorylated tau forms oligomers, then fibrils, and ultimately neurofibrillary tangles (NFTs). It is widely accepted that the initial soluble oligomeric forms of tau are probably the most pathologically relevant species but there is relatively little quantitative information to explain exactly what their toxic effects are at the individual neuron level. Electrophysiology provides a valuable tool to help uncover the mechanisms of action of tau oligomers on synaptic transmission within single neurons. Understanding the concentration-, time-, and neuronal compartment-dependent actions of soluble tau oligomers on neuronal and synaptic properties are essential to understanding how best to counteract its effects and to develop effective treatment strategies. Here, we briefly discuss the standard approaches used to elucidate these actions, focusing on the advantages and shortcomings of the experimental procedures. Subsequently, we will describe a new approach that addresses specific challenges with the current methods, thus allowing real-time toxicity evaluation at the single-neuron level.
  •  
63.
  • Islam, Tohidul, 1982, et al. (författare)
  • Novel ultrasensitive immunoassay for the selective quantification of tau oligomers and related soluble aggregates
  • 2024
  • Ingår i: ALZHEIMERS & DEMENTIA. - 1552-5260 .- 1552-5279. ; 20:4, s. 2894-2905
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONTau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers.METHODSA homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau.RESULTSThe assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases.DISCUSSIONThe quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens.Highlights The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.
  •  
64.
  • Kac, Przemyslaw R., et al. (författare)
  • Diagnostic value of serum versus plasma phospho-tau for Alzheimer's disease
  • 2022
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Blood phosphorylated tau (p-tau) forms are promising Alzheimer's disease (AD) biomarkers, but validation in matrices other than ethylenediaminetetraacetic acid (EDTA) plasma is limited. Firstly, we assessed the diagnostic potential of p-tau231 and p-tau181 in paired plasma and serum samples. Secondly, we compared serum and cerebrospinal fluid (CSF) samples from biomarker-positive AD and biomarker-negative control participants. Methods We studied three independent cohorts (n=115 total): cohorts 1 and 2 included individuals with paired plasma and serum, while cohort 3 included paired serum and CSF. Blood-based p-tau231 and p-tau181 were measured using in-house or commercial single molecule array (Simoa) methods. Results Serum and plasma p-tau231 and p-tau181 were two- to three-fold increased in biomarker-positive AD versus biomarker-negative controls (P <= 0.0008). Serum p-tau231 separated diagnostic groups with area under the curve (AUC) of 82.2% (cohort 3) to 88.2% (cohort 1) compared with 90.2% (cohort 1) for plasma. Similarly, p-tau181 showed AUC of 89.6% (cohort 1) to 89.8% (cohort 3) in serum versus 85.4% in plasma (cohort 1). P-tau231 and p-tau181 correlated slightly better in serum (rho=0.92 for cohort 1, 0.93 for cohort 3) than in plasma (rho=0.88, cohort 1). Within-individual p-tau181 (Quanterix) and p-tau231 concentrations were twice higher in plasma versus serum, but p-tau181 (in-house, Gothenburg) levels were not statistically different. Bland-Altman plots revealed that the relative difference between serum/plasma was larger in the lower range. P-tau levels in paired plasma and serum correlated strongly with each other (rho=0.75-0.93) as well as with CSF A beta(42) (rho= -0.56 to -0.59), p-tau and total-tau (rho=0.53-0.73). Based on the results, it seems possible that serum p-tau reflects the same pool of brain-secreted p-tau as in CSF; we estimated that less than 2% of CSF p-tau is found in serum, being same for both controls and AD. Conclusions Comparable diagnostic performances and strong correlations between serum versus plasma pairs suggest that p-tau analyses can be expanded to research cohorts and hospital systems that prefer serum to other blood matrices. However, absolute biomarker concentrations may not be interchangeable, indicating that plasma and serum samples should be used independently. These results should be validated in independent cohorts.
  •  
65.
  • Kac, Przemyslaw R., et al. (författare)
  • Plasma p-tau212: antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology.
  • 2023
  • Ingår i: medRxiv : the preprint server for health sciences.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.
  •  
66.
  • Kac, Przemyslaw R., 1995, et al. (författare)
  • Plasma p-tau212 antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
  •  
67.
  • Karikari, Thomas, et al. (författare)
  • An extensive plasmid library to prepare tau protein variants and study their functional biochemistry.
  • 2020
  • Ingår i: ACS chemical neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 11:19, s. 3117-3129
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking. We generated 44 sequence-verified plasmids including those encoding full length (FL) tau-441, its four-repeat microtubule-binding (K18) fragment, and their respective selected familial pathological variants (N279K, V337M, P301L, C291R and S356T). Moreover, plasmids for expressing single (C291A), double (C291A/C322A) and triple (C291A/C322A/I260C) cysteine-modified variants were generated to study alterations in cysteine content and locations. Furthermore, protocols for producing representative tau forms were developed. We produced and characterized the aggregation behavior of the triple cysteine-modified tau-K18, often used in real-time cell internalization and aggregation studies because it can be fluorescently labeled on a cysteine outside the microtubule-binding core. Similar to the wild type (WT), triple cysteine-modified tau-K18 aggregated by progressive -sheet enrichment, albeit at a slower rate. On prolonged incubation, cysteine-modified K18 formed paired helical filaments similar to those in Alzheimer's disease, sharing morphological phenotypes with WT tau-K18 filaments. Nonetheless, cysteine-modified tau-K18 filaments were significantly shorter (p=0.002) and mostly wider than WT filaments, explainable by their different principal filament elongation pathways: vertical (end-to-end) and lateral growth for WT and cysteine-modified respectively. Cysteine rearrangement may therefore induce filament polymorphism. Together, the plasmid library, the protein production methods, and the new insights into cysteine-dependent aggregation, should facilitate further studies and the design of anti-aggregation agents.
  •  
68.
  • Karikari, Thomas, et al. (författare)
  • Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility
  • 2022
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 18, s. 400-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent technological advances have enabled the detection of specific forms of phosphorylated tau in blood. Here, the authors summarize the performance of blood phosphorylated tau biomarkers in the context of Alzheimer disease and highlight related ethical, analytical and clinical challenges. Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
  •  
69.
  • Karikari, Thomas, et al. (författare)
  • Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts.
  • 2020
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 19:5, s. 422-433
  • Tidskriftsartikel (refereegranskat)abstract
    • CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.
  •  
70.
  • Karikari, Thomas, et al. (författare)
  • Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26, s. 429-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 130
Typ av publikation
tidskriftsartikel (127)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (126)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Karikari, Thomas (128)
Blennow, Kaj, 1958 (115)
Zetterberg, Henrik, ... (113)
Ashton, Nicholas J. (97)
Lessa Benedet, André ... (41)
Lantero Rodriguez, J ... (39)
visa fler...
Pascoal, Tharick A (21)
Rosa-Neto, Pedro (21)
Rosa-Neto, P. (17)
Pascoal, T. A. (17)
Snellman, Anniina (16)
Montoliu-Gaya, Laia (15)
Schöll, Michael, 198 ... (15)
Brum, Wagner S. (15)
Gauthier, S (14)
Therriault, J. (14)
Tissot, C. (14)
Suárez-Calvet, Marc (13)
Therriault, Joseph (13)
Gonzalez-Ortiz, Fern ... (13)
Kac, Przemyslaw R. (13)
Simrén, Joel, 1996 (12)
Lussier, F. Z. (12)
Zimmer, E. R. (11)
Stevenson, J (10)
Chamoun, M. (10)
Gauthier, Serge (10)
Ferreira, P. C. L. (10)
Ferrari-Souza, J. P. (10)
Servaes, S. (10)
Rahmouni, N. (10)
Tissot, Cecile (9)
Stevenson, Jenna (9)
González-Ortiz, Fern ... (9)
Bellaver, B (9)
Tudorascu, D. L. (9)
Brinkmalm, Gunnar (8)
Harrison, Peter (8)
Hansson, Oskar (8)
Leffa, D. T. (8)
Villemagne, V. L. (8)
Klunk, W. E. (8)
Emersic, Andreja (8)
Bellaver, Bruna (8)
Aarsland, Dag (7)
Kvartsberg, Hlin, 19 ... (7)
Vanmechelen, E (7)
Vanmechelen, Eugeen (7)
Hye, Abdul (7)
Servaes, Stijn (7)
visa färre...
Lärosäte
Göteborgs universitet (130)
Karolinska Institutet (14)
Lunds universitet (11)
Språk
Engelska (130)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (127)
Naturvetenskap (4)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy