SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Knuuti J) "

Search: WFRF:(Knuuti J)

  • Result 31-40 of 85
Sort/group result
   
EnumerationReferenceCoverFind
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Hallsten, K, et al. (author)
  • Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes
  • 2002
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:12, s. 3479-3485
  • Journal article (peer-reviewed)abstract
    • Rosiglitazone, a thiazolidinedione, enhances peripheral insulin sensitivity in patients with type 2 diabetes. Because the synergic action of insulin and exercise has been shown to be decreased in insulin resistance, the aim of this study was to compare the effects of rosiglitazone and metformin on muscle insulin responsiveness at rest and during exercise in patients with type 2 diabetes. Therefore, 45 patients with newly diagnosed or diet-treated type 2 diabetes were randomized for treatment with rosiglitazone (4 mg b.i.d.), metformin (1 g b.i.d.), or placebo in a 26-week double-blind trial. Skeletal muscle glucose uptake was measured using fluorine-18-labeled fluoro-deoxy-glucose and positron emission tomography (PET) during euglycemic-hyperinsulinemic clamp and one-legged exercise before and after the treatment period. Rosiglitazone (P < 0.05) and metformin (P < 0.0001) treatment lowered the mean glycosylated hemoglobin. The skeletal muscle glucose uptake was increased by 38% (P < 0.01) and whole-body glucose uptake by 44% in the rosiglitazone group. Furthermore, the exercise-induced increment during insulin stimulation was enhanced by 99% (P < 0.0001). No changes were observed in skeletal muscle or whole-body insulin sensitivity in the metformin group. In conclusion, rosiglitazone but not metformin 1) improves insulin responsiveness in resting skeletal muscle and 2) doubles the insulin-stimulated glucose uptake rate during physical exercise in patients with type 2 diabetes. Our results suggest that rosiglitazone improves synergic action of insulin and exercise.
  •  
36.
  •  
37.
  • Hesse, B, et al. (author)
  • EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology
  • 2005
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 32:7, s. 855-897
  • Journal article (peer-reviewed)abstract
    • The European procedural guidelines for radionuclide imaging of myocardial perfusion and viability are presented in 13 sections covering patient information, radiopharmaceuticals, injected activities and dosimetry, stress tests, imaging protocols and acquisition, quality control and reconstruction methods, gated studies and attenuation-scatter compensation, data analysis, reports and image display, and positron emission tomography. If the specific recommendations given could not be based on evidence from original, scientific studies, we tried to express this state-of-art. The guidelines are designed to assist in the practice of performing, interpreting and reporting myocardial perfusion SPET. The guidelines do not discuss clinical indications, benefits or drawbacks of radionuclide myocardial imaging compared to non-nuclear techniques, nor do they cover cost benefit or cost effectiveness.
  •  
38.
  •  
39.
  • Kalliokoski, KK, et al. (author)
  • Myocardial perfusion after marathon running
  • 2004
  • In: Scandinavian Journal of Medicine and Science in Sport. - : Wiley. - 0905-7188 .- 1600-0838. ; 14:4, s. 208-214
  • Journal article (peer-reviewed)abstract
    • We investigated the effects of acute prolonged exercise (marathon running) on cardiac function and myocardial perfusion. Cardiac dimensions and function were measured in seven endurance-trained men using echocardiography before and repeatedly after marathon (42.2 km) running (at 10 min, 150 min, and 20 h). Myocardial perfusion and perfusion resistance were measured using positron emission tomography and 15O-H2O before and 85-115 min after running. Echocardiographic indices showed only mild and clinically non-significant changes in cardiac function after running. Rate-pressure-corrected basal myocardial perfusion (0.89+/-0.13 vs. 1.20+/-0.32 mL min(-1) g(-1), P=0.04) was increased after running. Also, adenosine-stimulated perfusion tended to be higher (3.67+/-0.81 vs. 4.47+/-0.52 mL min(-1) g(-1), P=0.12) and perfusion resistance during adenosine stimulation was significantly lower after running (26+/-6 vs. 18+/-3 mmHg min g mL(-1), P=0.03). Plasma free fatty acid (FFA) concentration was significantly increased after running. These results show that marathon running does not cause marked changes in cardiac function in healthy men. Basal perfusion was increased after exercise, probably reflecting changes in fuel preferences to increased use of FFAs. Strenuous exercise also seems to enhance coronary reactivity, which could thereby serve as a protective mechanism to vascular events after exercise.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 31-40 of 85

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view