SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knuuti J) "

Sökning: WFRF:(Knuuti J)

  • Resultat 61-70 av 85
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  •  
62.
  •  
63.
  • Kalliokoski, K K, et al. (författare)
  • Perfusion distribution between and within muscles during intermittent static exercise in endurance-trained and untrained men
  • 2003
  • Ingår i: International Journal of Sports Medicine. - : Georg Thieme Verlag KG. - 0172-4622 .- 1439-3964. ; 24, s. 400-403
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that muscle perfusion varies between different quadriceps femoris muscles during submaximal exercise in humans. In animals, endurance training changes perfusion distribution between muscles during exercise. Whether the same is observed in humans is currently unknown. Therefore, we compared perfusion levels between different parts of the quadriceps femoris muscle group during one-legged intermittent static exercise in seven endurance-trained and seven untrained men. Muscle perfusion was measured using positron emission tomography with [ 15O]-H 2 O. In addition, relative dispersion of perfusion (standard deviation within a region/mean within a region x 100 %) within each muscle region was calculated as an index of perfusion heterogeneity within the muscles. Muscle perfusion tended to be lower in endurance-trained men (p = 0.16) and it was also different between the regions (p < 0.001). However, perfusion distributed similarly between the groups (p = 0.51). Relative dispersion of perfusion within the muscles was lower in endurance-trained men (p = 0.01) and it was also different between muscles (p < 0.001). These results suggest that endurance training does not alter perfusion distribution between muscles, but it decreases perfusion heterogeneity within the muscles.
  •  
64.
  •  
65.
  •  
66.
  •  
67.
  •  
68.
  • Kudomi, Nobuyuki, et al. (författare)
  • Myocardial Blood Flow and Metabolic Rate of Oxygen Measurement in the Right and Left Ventricles at Rest and During Exercise Using 15O-Labeled Compounds and PET
  • 2019
  • Ingår i: Frontiers in Physiology. - Lausanne : Frontiers Media S.A.. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Simultaneous measurement of right (RV) and left ventricle (LV) myocardial blood flow (MBF), oxygen extraction fraction (OEF), and oxygen consumption (MVO2) non-invasively in humans would provide new possibilities to understand cardiac physiology and different patho-physiological states. Methods: We developed and tested an optimized novel method to measure MBF, OEF, and MVO2 simultaneously both in the RV and LV free wall (FW) using positron emission tomography in healthy young men at rest and during supine bicycle exercise. Results: Resting MBF was not significantly different between the three myocardial regions. Exercise increased MBF in the LVFW and septum, but MBF was lower in the RV compared to septum and LVFW during exercise. Resting OEF was similar between the three different myocardial regions (similar to 70%) and increased in response to exercise similarly in all regions. MVO2 increased approximately two to three times from rest to exercise in all myocardial regions, but was significantly lower in the RV during exercise as compared to septum LVFW. Conclusion: MBF, OEF, and MVO2 can be assessed simultaneously in the RV and LV myocardia at rest and during exercise. Although there are no major differences in the MBF and OEF between LV and RV myocardial regions in the resting myocardium, MVO2 per gram of myocardium appears to be lower the RV in the exercising healthy human heart due to lower mean blood flow. The presented method may provide valuable insights for the assessment of MBF, OEF and MVO2 in hearts in different pathophysiological states.
  •  
69.
  • Laaksonen, Marko, et al. (författare)
  • Effects of exhaustive stretch-shortening cycle exercise on muscle blood flow during exercise
  • 2006
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 186:4, s. 261-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Aim: The influence of exhaustive stretch-shortening cycle exercise (SSC) on skeletal muscle blood flow (BF) during exercise is currently unknown. Methods: Quadriceps femoris (QF) BF was measured in eight healthy men using positron emission tomography before and 3 days after exhaustive SSC exercise. The SSC protocol consisted of maximal and submaximal drop jumps with one leg. Needle biopsies of the vastus lateralis muscles were taken immediately and 2 days after SSC for muscle endothelial nitric oxide synthase (eNOS) and interleukin-1-beta (IL-1beta) mRNA level determinations. Results: All subjects reported subjective muscle soreness after SSC (P < 0.001), which was well in line with a decrease in maximal isometric contraction force (MVC) and increase in serum creatine kinase activity (CK) (P = 0.018). After SSC muscle BF was 25% higher in entire QF (P = 0.043) and in its deep and superficial muscle regions, whereas oxygen uptake remained unchanged (P = 0.893). Muscle biopsies revealed increased IL-1beta (30 min: 152 +/- 75%, P = 0.012 and 2 days: 108 +/- 203%, P = 0.036) but decreased or unchanged eNOS (30 min; -21 +/- 57%, P = 0.050 and 2 days: +101 +/- 204%, P = 0.779) mRNA levels after SSC. Conclusion: It was concluded that fatiguing SSC exercise induces increased muscle BF during exercise, which is likely to be associated with pro-inflammatory processes in the exercised muscle.
  •  
70.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 85

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy