SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kooner Jaspal S.) "

Search: WFRF:(Kooner Jaspal S.)

  • Result 51-56 of 56
Sort/group result
   
EnumerationReferenceCoverFind
51.
  • Yaghootkar, Hanieh, et al. (author)
  • Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease and type 2 diabetes.
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:12, s. 4369-77
  • Journal article (peer-reviewed)abstract
    • The mechanisms that predispose to hypertension, coronary artery disease (CAD) and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy - a reduction in subcutaneous adipose tissue - it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, coronary artery disease and type 2 diabetes. We aimed to test the hypothesis that common alleles associated with insulin resistance also influence the wider clinical and biochemical profile of monogenic insulin resistance. We selected 19 common genetic variants associated with fasting insulin based measures of insulin resistance. We used hierarchical clustering and results from genome wide association studies of 8 non-disease outcomes of monogenic insulin resistance, to group these variants. We analysed genetic risk scores against disease outcomes including 12,171 T2D cases, 40,365 CAD cases and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle, form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (ß=0.018; p=4x10(-29)), lower HDL cholesterol (ß=-0.020; p=7x10(-37)), greater hepatic steatosis (ß=0.021; p=3x10(-4)) higher alanine transaminase (ß=0.002; p=3x10(-5)), lower SHBG (ß=-0.010; p=9x10(-13)) and lower adiponectin (ß=-0.015; p=2x10(-26)). The same risk alleles were associated with lower BMI (per-allele ß=-0.008; p=7x10(-8)), and increased visceral-to-subcutaneous adipose tissue ratio (ß=-0.015; p=6x10(-7)). Individuals carrying >= 17 fasting insulin raising alleles (5.5% population) were slimmer (0.30 kgm(-2)) but at increased risk of T2D (odds ratio [OR] 1.46, per-allele p=5x10(-13)), CAD (OR 1.12, per-allele p=1x10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg (per-allele p=2x10(-5)), and 0.67 mmHg (per-allele p=2x10(-4)), respectively, compared to individuals carrying <=9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.
  •  
52.
  • Zhang, Weihua, et al. (author)
  • Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels.
  • 2016
  • In: Thrombosis and haemostasis. - 2567-689X. ; 116:6, s. 1041-1049
  • Journal article (peer-reviewed)abstract
    • ). Together these two loci explain 7 % of the total variance in serum L-arginine concentrations. The associations at both loci were replicated in independent cohorts with plasma L-arginine measurements (p<0.004). The two sentinel SNPs are in nearly complete LD with the nonsynonymous SNP rs3733402 at KLKB1 and the 5'-UTR SNP rs1801020 at F12, respectively. SNPs at both loci are associated with blood pressure. Our findings provide new insight into the genetic regulation of L-arginine and its potential relationship with cardiovascular risk.
  •  
53.
  • Parmar, Priyanka, et al. (author)
  • Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 38, s. 206-216
  • Journal article (peer-reviewed)abstract
    • Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
  •  
54.
  • Saleheen, Danish, et al. (author)
  • Loss of Cardioprotective Effects at the ADAMTS7 Locus as a Result of Gene-Smoking Interactions
  • 2017
  • In: Circulation. - 0009-7322 .- 1524-4539. ; 135:24, s. 2336-2353
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk.METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of < 1.0x10-3 (Bonferroni correction for 50 tests).RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P= 1.3x10(-16)) in comparison with 5% in ever-smokers (P= 2.5x10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value= 8.7x10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7.CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.
  •  
55.
  • Schumann, Gunter, et al. (author)
  • KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:50, s. 14372-14377
  • Journal article (peer-reviewed)abstract
    • Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified beta-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 x 10(-12)). beta-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific beta-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
  •  
56.
  • Scott, Robert A., et al. (author)
  • A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease
  • 2016
  • In: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:341
  • Journal article (peer-reviewed)abstract
    • Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 51-56 of 56
Type of publication
journal article (56)
Type of content
peer-reviewed (56)
Author/Editor
Chambers, John C. (50)
Zhang, Weihua (48)
Kooner, Jaspal S. (48)
Wareham, Nicholas J. (41)
Salomaa, Veikko (35)
Boehnke, Michael (35)
show more...
Langenberg, Claudia (34)
Gieger, Christian (33)
Deloukas, Panos (32)
Laakso, Markku (32)
Loos, Ruth J F (32)
Luan, Jian'an (31)
McCarthy, Mark I (30)
Mohlke, Karen L (30)
Samani, Nilesh J. (30)
Elliott, Paul (30)
Hayward, Caroline (29)
Kuusisto, Johanna (28)
Scott, Robert A (28)
Uitterlinden, André ... (28)
Gudnason, Vilmundur (28)
van der Harst, Pim (28)
Perola, Markus (27)
Morris, Andrew P. (27)
Lind, Lars (26)
Munroe, Patricia B. (26)
Harris, Tamara B (26)
Esko, Tõnu (26)
Chasman, Daniel I. (25)
Saleheen, Danish (25)
Tuomilehto, Jaakko (25)
Metspalu, Andres (25)
Zhao, Jing Hua (25)
Rudan, Igor (24)
Ridker, Paul M. (24)
van Duijn, Cornelia ... (24)
Rotter, Jerome I. (24)
Peters, Annette (24)
Palmer, Colin N. A. (24)
Vollenweider, Peter (24)
Psaty, Bruce M (23)
Jackson, Anne U. (23)
Stefansson, Kari (22)
Hofman, Albert (22)
Feitosa, Mary F. (22)
Lindgren, Cecilia M. (22)
Mangino, Massimo (21)
Jarvelin, Marjo-Riit ... (21)
Mahajan, Anubha (21)
Froguel, Philippe (21)
show less...
University
Uppsala University (40)
Lund University (39)
Karolinska Institutet (26)
Umeå University (25)
University of Gothenburg (10)
Högskolan Dalarna (3)
show more...
Stockholm University (2)
Stockholm School of Economics (1)
show less...
Language
English (56)
Research subject (UKÄ/SCB)
Medical and Health Sciences (48)
Natural sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view