SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kooperberg Charles) "

Search: WFRF:(Kooperberg Charles)

  • Result 31-40 of 72
Sort/group result
   
EnumerationReferenceCoverFind
31.
  • Weinstock, Joshua S, et al. (author)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • In: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Journal article (peer-reviewed)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
32.
  • Wolpin, Brian M, et al. (author)
  • Pancreatic cancer risk and ABO blood group alleles : results from the pancreatic cancer cohort consortium
  • 2010
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 70:3, s. 1015-1023
  • Journal article (peer-reviewed)abstract
    • A recent genome-wide association study (PanScan) identified significant associations at the ABO gene locus with risk of pancreatic cancer, but the influence of specific ABO genotypes remains unknown. We determined ABO genotypes (OO, AO, AA, AB, BO, and BB) in 1,534 cases and 1,583 controls from 12 prospective cohorts in PanScan, grouping participants by genotype-derived serologic blood type (O, A, AB, and B). Adjusted odds ratios (ORs) for pancreatic cancer by ABO alleles were calculated using logistic regression. Compared with blood type O, the ORs for pancreatic cancer in subjects with types A, AB, and B were 1.38 [95% confidence interval (95% CI), 1.18-1.62], 1.47 (95% CI, 1.07-2.02), and 1.53 (95% CI, 1.21-1.92), respectively. The incidence rates for blood types O, A, AB, and B were 28.9, 39.9, 41.8, and 44.5 cases per 100,000 subjects per year. An increase in risk was noted with the addition of each non-O allele. Compared with OO genotype, subjects with AO and AA genotype had ORs of 1.33 (95% CI, 1.13-1.58) and 1.61 (95% CI, 1.22-2.18), whereas subjects with BO and BB genotypes had ORs of 1.45 (95% CI, 1.14-1.85) and 2.42 (1.28-4.57). The population attributable fraction for non-O blood type was 19.5%. In a joint model with smoking, current smokers with non-O blood type had an adjusted OR of 2.68 (95% CI, 2.03-3.54) compared with nonsmokers of blood type O. We concluded that ABO genotypes were significantly associated with pancreatic cancer risk.
  •  
33.
  • Wolpin, Brian M., et al. (author)
  • Variant ABO Blood Group Alleles, Secretor Status, and Risk of Pancreatic Cancer: Results from the Pancreatic Cancer Cohort Consortium
  • 2010
  • In: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755 .- 1055-9965. ; 19:12, s. 3140-3149
  • Journal article (peer-reviewed)abstract
    • Background: Subjects with non-O ABO blood group alleles have increased risk of pancreatic cancer. Glycosyltransferase activity is greater for the A(1) versus A(2) variant, whereas O01 and O02 variants are nonfunctioning. We hypothesized: 1) A(1) allele would confer greater risk than A(2) allele, 2) protective effect of the O allele would be equivalent for O01 and O02 variants, 3) secretor phenotype would modify the association with risk. Methods: We determined ABO variants and secretor phenotype from single nucleotide polymorphisms in ABO and FUT2 genes in 1,533 cases and 1,582 controls from 12 prospective cohort studies. Adjusted odds ratios (OR) for pancreatic cancer were calculated using logistic regression. Results: An increased risk was observed in participants with A(1) but not A(2) alleles. Compared with subjects with genotype O/O, genotypes A(2)/O, A(2)/A(1), A(1)/O, and A(1)/A(1) had ORs of 0.96 (95% CI, 0.72-1.26), 1.46 (95% CI, 0.98-2.17), 1.48 (95% CI, 1.23-1.78), and 1.71 (95% CI, 1.18-2.47). Risk was similar for O01 and O02 variant O alleles. Compared with O01/O01, the ORs for each additional allele of O02, A(1), and A(2) were 1.00 (95% CI, 0.87-1.14), 1.38 (95% CI, 1.20-1.58), and 0.96 (95% CI, 0.77-1.20); P-value, O01 versus O02 = 0.94, A(1) versus A(2) = 0.004. Secretor phenotype was not an effect modifier (P-interaction = 0.63). Conclusions: Among participants in a large prospective cohort consortium, ABO allele subtypes corresponding to increased glycosyltransferase activity were associated with increased pancreatic cancer risk. Impact: These data support the hypothesis that ABO glycosyltransferase activity influences pancreatic cancer risk rather than actions of other nearby genes on chromosome 9q34. Cancer Epidemiol Biomarkers Prev; 19(12); 3140-9. (C) 2010 AACR.
  •  
34.
  • Wu, Chen, et al. (author)
  • Genome-wide association study of survival in patients with pancreatic adenocarcinoma
  • 2014
  • In: Gut. - : BMJ Publishing Group. - 0017-5749 .- 1468-3288. ; 63:1, s. 152-160
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVE: Survival of patients with pancreatic adenocarcinoma is limited and few prognostic factors are known. We conducted a two-stage genome-wide association study (GWAS) to identify germline variants associated with survival in patients with pancreatic adenocarcinoma. METHODS: We analysed overall survival in relation to single nucleotide polymorphisms (SNPs) among 1005 patients from two large GWAS datasets, PanScan I and ChinaPC. Cox proportional hazards regression was used in an additive genetic model with adjustment for age, sex, clinical stage and the top four principal components of population stratification. The first stage included 642 cases of European ancestry (PanScan), from which the top SNPs (p≤10(-5)) were advanced to a joint analysis with 363 additional patients from China (ChinaPC). RESULTS: In the first stage of cases of European descent, the top-ranked loci were at chromosomes 11p15.4, 18p11.21 and 1p36.13, tagged by rs12362504 (p=1.63×10(-7)), rs981621 (p=1.65×10(-7)) and rs16861827 (p=3.75×10(-7)), respectively. 131 SNPs with p≤10(-5) were advanced to a joint analysis with cases from the ChinaPC study. In the joint analysis, the top-ranked SNP was rs10500715 (minor allele frequency, 0.37; p=1.72×10(-7)) on chromosome 11p15.4, which is intronic to the SET binding factor 2 (SBF2) gene. The HR (95% CI) for death was 0.74 (0.66 to 0.84) in PanScan I, 0.79 (0.65 to 0.97) in ChinaPC and 0.76 (0.68 to 0.84) in the joint analysis. CONCLUSIONS: Germline genetic variation in the SBF2 locus was associated with overall survival in patients with pancreatic adenocarcinoma of European and Asian ancestry. This association should be investigated in additional large patient cohorts.
  •  
35.
  • Yu, Bing, et al. (author)
  • Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure
  • 2021
  • In: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 78:1, s. 42-52
  • Journal article (peer-reviewed)abstract
    • Background: Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as clonally expanded leukemogenic sequence variations (particularly in DNMT3A, TET2, ASXL1, and JAK2) in asymptomatic individuals, is associated with cardiovascular events, including recurrent heart failure (HF). Objectives: This study sought to evaluate whether CHIP is associated with incident HF. Methods: CHIP status was obtained from whole exome or genome sequencing of blood DNA in participants without prevalent HF or hematological malignancy from 5 cohorts. Cox proportional hazards models were performed within each cohort, adjusting for demographic and clinical risk factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele frequency >10%), HF with or without baseline coronary heart disease, and left ventricular ejection fraction were evaluated in secondary analyses. Results: Of 56,597 individuals (59% women, mean age 58 years at baseline), 3,406 (6%) had CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow-up. CHIP was prospectively associated with a 25% increased risk of HF in meta-analysis (hazard ratio: 1.25; 95% confidence interval: 1.13-1.38) with consistent associations across cohorts. ASXL1, TET2, and JAK2 sequence variations were each associated with an increased risk of HF, whereas DNMT3A sequence variations were not associated with HF. Secondary analyses suggested large CHIP was associated with a greater risk of HF (hazard ratio: 1.29; 95% confidence interval: 1.15-1.44), and the associations for CHIP on HF with and without prior coronary heart disease were homogenous. ASXL1 sequence variations were associated with reduced left ventricular ejection fraction. Conclusions: CHIP, particularly sequence variations in ASXL1, TET2, and JAK2, represents a new risk factor for HF.
  •  
36.
  • Zheng, Hou-Feng, et al. (author)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Journal article (peer-reviewed)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
37.
  • Asselbergs, Folkert W., et al. (author)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
38.
  • Bhattacharya, Romit, et al. (author)
  • Clonal Hematopoiesis Is Associated with Higher Risk of Stroke
  • 2022
  • In: Stroke. - 0039-2499. ; 29:2, s. 788-797
  • Journal article (peer-reviewed)abstract
    • Background and Purpose: Clonal hematopoiesis of indeterminate potential (CHIP) is a novel age-related risk factor for cardiovascular disease-related morbidity and mortality. The association of CHIP with risk of incident ischemic stroke was reported previously in an exploratory analysis including a small number of incident stroke cases without replication and lack of stroke subphenotyping. The purpose of this study was to discover whether CHIP is a risk factor for ischemic or hemorrhagic stroke. Methods: We utilized plasma genome sequence data of blood DNA to identify CHIP in 78 752 individuals from 8 prospective cohorts and biobanks. We then assessed the association of CHIP and commonly mutated individual CHIP driver genes (DNMT3A, TET2, and ASXL1) with any stroke, ischemic stroke, and hemorrhagic stroke. Results: CHIP was associated with an increased risk of total stroke (hazard ratio, 1.14 [95% CI, 1.03-1.27]; P=0.01) after adjustment for age, sex, and race. We observed associations with CHIP with risk of hemorrhagic stroke (hazard ratio, 1.24 [95% CI, 1.01-1.51]; P=0.04) and with small vessel ischemic stroke subtypes. In gene-specific association results, TET2 showed the strongest association with total stroke and ischemic stroke, whereas DMNT3A and TET2 were each associated with increased risk of hemorrhagic stroke. Conclusions: CHIP is associated with an increased risk of stroke, particularly with hemorrhagic and small vessel ischemic stroke. Future studies clarifying the relationship between CHIP and subtypes of stroke are needed.
  •  
39.
  • Chen, Zhishan, et al. (author)
  • Fine-mapping analysis including over 254 000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
  •  
40.
  • Crosby, Jacy, et al. (author)
  • Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease
  • 2014
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 371:1, s. 22-31
  • Journal article (peer-reviewed)abstract
    • Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G -> A and IVS3+1G -> T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1x10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8x10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4x10(-6)). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 31-40 of 72
Type of publication
journal article (70)
other publication (1)
conference paper (1)
Type of content
peer-reviewed (68)
other academic/artistic (4)
Author/Editor
Kooperberg, Charles (71)
Zheng, Wei (30)
Shu, Xiao-Ou (28)
Albanes, Demetrius (27)
Chanock, Stephen J (26)
Kraft, Peter (26)
show more...
Peters, Ulrike (25)
Hunter, David J (25)
Jacobs, Eric J (23)
Yu, Kai (21)
Wolpin, Brian M (21)
Zeleniuch-Jacquotte, ... (21)
Bueno-de-Mesquita, H ... (20)
Rotter, Jerome I. (20)
Arslan, Alan A (20)
Hartge, Patricia (20)
Riboli, Elio (19)
Canzian, Federico (19)
Wareham, Nicholas J. (19)
Gaziano, J Michael (19)
Tobias, Geoffrey S (19)
Visvanathan, Kala (18)
van Duijn, Cornelia ... (18)
Langenberg, Claudia (18)
Virtamo, Jarmo (18)
Hutchinson, Amy (18)
Boutron-Ruault, Mari ... (17)
Gallinger, Steven (17)
Trichopoulos, Dimitr ... (17)
Buring, Julie E. (17)
Samani, Nilesh J. (17)
Duell, Eric J. (17)
Fornage, Myriam (17)
Berndt, Sonja I (16)
White, Emily (16)
Patel, Alpa, V (16)
Fuchs, Charles S (16)
Lacroix, Andrea (16)
Bracci, Paige M (16)
Giovannucci, Edward ... (16)
Li, Donghui (16)
Risch, Harvey A (16)
Krogh, Vittorio (15)
Giles, Graham G (15)
Hallmans, Göran (15)
Boehnke, Michael (15)
Stolzenberg-Solomon, ... (15)
Klein, Alison P (15)
Wactawski-Wende, Jea ... (15)
Rothman, Nathaniel (15)
show less...
University
Umeå University (46)
Lund University (34)
Karolinska Institutet (29)
Uppsala University (25)
University of Gothenburg (12)
Högskolan Dalarna (4)
show more...
Royal Institute of Technology (1)
show less...
Language
English (72)
Research subject (UKÄ/SCB)
Medical and Health Sciences (68)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view