SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kosma Veli Matti) "

Search: WFRF:(Kosma Veli Matti)

  • Result 11-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Lawrenson, Kate, et al. (author)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
12.
  • Mavaddat, Nasim, et al. (author)
  • Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:5, s. 036-036
  • Journal article (peer-reviewed)abstract
    • Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
  •  
13.
  • Purrington, Kristen S., et al. (author)
  • Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer
  • 2014
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 35:5, s. 1012-1019
  • Journal article (peer-reviewed)abstract
    • In a genome-wide scan, we show that 30 variants in 25 genomic regions are associated with risk of TN breast cancer. Women carrying many of the risk variants may have 4-fold increased risk relative to women with few variants.Triple-negative (TN) breast cancer is an aggressive subtype of breast cancer associated with a unique set of epidemiologic and genetic risk factors. We conducted a two-stage genome-wide association study of TN breast cancer (stage 1: 1529 TN cases, 3399 controls; stage 2: 2148 cases, 1309 controls) to identify loci that influence TN breast cancer risk. Variants in the 19p13.1 and PTHLH loci showed genome-wide significant associations (P < 5 x 10(-) (8)) in stage 1 and 2 combined. Results also suggested a substantial enrichment of significantly associated variants among the single nucleotide polymorphisms (SNPs) analyzed in stage 2. Variants from 25 of 74 known breast cancer susceptibility loci were also associated with risk of TN breast cancer (P < 0.05). Associations with TN breast cancer were confirmed for 10 loci (LGR6, MDM4, CASP8, 2q35, 2p24.1, TERT-rs10069690, ESR1, TOX3, 19p13.1, RALY), and we identified associations with TN breast cancer for 15 additional breast cancer loci (P < 0.05: PEX14, 2q24.1, 2q31.1, ADAM29, EBF1, TCF7L2, 11q13.1, 11q24.3, 12p13.1, PTHLH, NTN4, 12q24, BRCA2, RAD51L1-rs2588809, MKL1). Further, two SNPs independent of previously reported signals in ESR1 [rs12525163 odds ratio (OR) = 1.15, P = 4.9 x 10(-) (4)] and 19p13.1 (rs1864112 OR = 0.84, P = 1.8 x 10(-) (9)) were associated with TN breast cancer. A polygenic risk score (PRS) for TN breast cancer based on known breast cancer risk variants showed a 4-fold difference in risk between the highest and lowest PRS quintiles (OR = 4.03, 95% confidence interval 3.46-4.70, P = 4.8 x 10(-) (69)). This translates to an absolute risk for TN breast cancer ranging from 0.8% to 3.4%, suggesting that genetic variation may be used for TN breast cancer risk prediction.
  •  
14.
  • Shu, Xiang, et al. (author)
  • Associations of obesity and circulating insulin and glucose with breast cancer risk : a Mendelian randomization analysis
  • 2019
  • In: International Journal of Epidemiology. - : OXFORD UNIV PRESS. - 0300-5771 .- 1464-3685. ; 48:3, s. 795-806
  • Journal article (peer-reviewed)abstract
    • Background: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. Methods: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 x 10(-4)], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 x 10(-4)), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 x 10(-19)) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 x 10(-6)). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. Conclusions: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer.
  •  
15.
  • Stevens, Kristen N, et al. (author)
  • 19p13.1 is a triple negative-specific breast cancer susceptibility locus
  • 2012
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 72, s. 1795-
  • Journal article (peer-reviewed)abstract
    • The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.
  •  
16.
  • Stevens, Kristen N., et al. (author)
  • Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer
  • 2011
  • In: Cancer Research. - 1538-7445. ; 71:19, s. 6240-6249
  • Journal article (peer-reviewed)abstract
    • Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer. Cancer Res; 71(19); 6240-9. (C)2011 AACR.
  •  
17.
  • Vuorela, Mikko, et al. (author)
  • Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility.
  • 2011
  • In: Breast cancer research and treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 130:3, s. 1003-1010
  • Journal article (peer-reviewed)abstract
    • RAD51C, a RAD51 paralogue involved in homologous recombination, is a recently established Fanconi anemia and breast cancer predisposing factor. In the initial report, RAD51C mutations were shown to confer a high risk for both breast and ovarian tumors, but most of the replication studies published so far have failed to identify any additional susceptibility alleles. Here, we report a full mutation screening of the RAD51C gene in 147 Finnish familial breast cancer cases and in 232 unselected ovarian cancer cases originating from Finland and Sweden. In addition, in order to resolve whether common RAD51C SNPs are risk factors for breast cancer, we genotyped five tagging single nucleotide polymorphisms, rs12946522, rs304270, rs304283, rs17222691, and rs28363312, all located within the gene, from 993 Finnish breast cancer cases and 871 controls for cancer associated variants. Whereas, none of the studied common SNPs associated with breast cancer susceptibility, mutation analysis revealed two clearly pathogenic alterations. RAD51C c.-13_14del27 was observed in one familial breast cancer case and c.774delT in one unselected ovarian cancer case, thus confirming that RAD51C mutations are implicated in breast and ovarian cancer predisposition, although their overall frequency seems to be low. Independent identification of the very recently reported RAD51C c.774delT mutation in yet another patient originating from Sweden suggests that it might be a recurrent mutation in that population and should be studied further. The reliable estimation of the clinical implications of carrying a defective RAD51C allele still requires the identification of additional mutation positive families.
  •  
18.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-18 of 18
Type of publication
journal article (18)
Type of content
peer-reviewed (18)
Author/Editor
Mannermaa, Arto (18)
Nevanlinna, Heli (16)
Blomqvist, Carl (15)
Chang-Claude, Jenny (15)
Giles, Graham G (15)
Hamann, Ute (15)
show more...
Brauch, Hiltrud (14)
Cox, Angela (14)
Couch, Fergus J. (13)
Easton, Douglas F. (13)
Schmidt, Marjanka K. (13)
Milne, Roger L. (12)
Cross, Simon S. (12)
Hall, Per (12)
Hopper, John L. (12)
Southey, Melissa C. (12)
Winqvist, Robert (12)
Dunning, Alison M. (11)
Benitez, Javier (11)
Bojesen, Stig E. (11)
Fasching, Peter A. (11)
Lambrechts, Diether (11)
Margolin, Sara (11)
Pharoah, Paul D. P. (11)
Garcia-Closas, Monts ... (11)
Flesch-Janys, Dieter (11)
Beckmann, Matthias W ... (11)
Haiman, Christopher ... (10)
Chenevix-Trench, Geo ... (10)
Czene, Kamila (10)
Peto, Julian (10)
Zheng, Wei (10)
Le Marchand, Loïc (10)
Brenner, Hermann (9)
Arndt, Volker (9)
Andrulis, Irene L. (9)
Anton-Culver, Hoda (9)
Burwinkel, Barbara (9)
Devilee, Peter (9)
Guenel, Pascal (9)
Meindl, Alfons (9)
Truong, Thérèse (9)
Wang, Qin (8)
Bolla, Manjeet K. (8)
Gonzalez-Neira, Anna (8)
Lindblom, Annika (8)
Lissowska, Jolanta (8)
Radice, Paolo (8)
Schmutzler, Rita K. (8)
Godwin, Andrew K. (8)
show less...
University
Karolinska Institutet (16)
Lund University (12)
Uppsala University (10)
Linköping University (3)
University of Gothenburg (1)
Umeå University (1)
Language
English (18)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view