SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Landers John E.) "

Search: WFRF:(Landers John E.)

  • Result 11-20 of 27
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Kenna, Kevin P., et al. (author)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Journal article (peer-reviewed)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
12.
  • Marriott, Heather, et al. (author)
  • Mutations in the tail and rod domains of the neurofilament heavy-chain gene increase the risk of ALS
  • 2024
  • In: Annals of Clinical and Translational Neurology. - : John Wiley & Sons. - 2328-9503. ; 11:7, s. 1775-1786
  • Journal article (peer-reviewed)abstract
    • Objective: Neurofilament heavy-chain gene (NEFH) variants are associated with multiple neurodegenerative diseases, however, their relationship with ALS has not been robustly explored. Still, NEFH is commonly included in genetic screening panels worldwide. We therefore aimed to determine if NEFH variants modify ALS risk.Methods: Genetic data of 11,130 people with ALS and 7,416 controls from the literature and Project MinE were analysed. We performed meta-analyses of published case–control studies reporting NEFH variants, and variant analysis of NEFH in Project MinE whole-genome sequencing data.Results: Fixed-effects meta-analysis found that rare (MAF <1%) missense variants in the tail domain of NEFH increase ALS risk (OR 4.55, 95% CI 2.13–9.71, p < 0.0001). In Project MinE, ultrarare NEFH variants increased ALS risk (OR 1.37 95% CI 1.14–1.63, p = 0.0007), with rod domain variants (mostly intronic) appearing to drive the association (OR 1.45 95% CI 1.18–1.77, pMadsen–Browning = 0.0007, pSKAT-O = 0.003). While in the tail domain, ultrarare (MAF <0.1%) pathogenic missense variants were also associated with higher risk of ALS (OR 1.94, 95% CI 0.86–4.37, pMadsen–Browning = 0.039), supporting the meta-analysis results. Finally, several tail in-frame deletions were also found to affect disease risk, however, both protective and pathogenic deletions were found in this domain, highlighting an intricated architecture that requires further investigation.Interpretation: We showed that NEFH tail missense and in-frame deletion variants, and intronic rod variants are risk factors for ALS. However, they are not variants of large effect, and their functional impact needs to be clarified in further studies. Therefore, their inclusion in routine genetic screening panels should be reconsidered.
  •  
13.
  • Tazelaar, Gijs H. P., et al. (author)
  • Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort
  • 2019
  • In: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 74, s. 234.e9-234.e15
  • Journal article (peer-reviewed)abstract
    • NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome 1) mutations are known to cause hereditary spastic paraplegia type 6, a neurodegenerative disease that phenotypically overlaps to some extent with amyotrophic lateral sclerosis (ALS). Previously, a genomewide screen for copy number variants found an association with rare deletions in NIPA1 and ALS, and subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in NIPA1 convey increased ALS susceptibility. We set out to perform a large-scale replication study to further investigate the role of NIPA1 polyalanine expansions with ALS, in which we characterized NIPA1 repeat size in an independent international cohort of 3955 patients with ALS and 2276 unaffected controls and combined our results with previous reports. Meta-analysis on a total of 6245 patients with ALS and 5051 controls showed an overall increased risk of ALS in those with expanded (>8) GCG repeat length (odds ratio = 1.50, p = 3.8×10−5). Together with previous reports, these findings provide evidence for an association of an expanded polyalanine repeat in NIPA1 and ALS.
  •  
14.
  • Van Der Spek, Rick A., et al. (author)
  • Reconsidering the causality of TIA1 mutations in ALS
  • 2018
  • In: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : TAYLOR & FRANCIS LTD. - 2167-8421 .- 2167-9223. ; 19:1-2, s. 1-3
  • Journal article (other academic/artistic)
  •  
15.
  • van Es, Michael A, et al. (author)
  • Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis
  • 2009
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 1083-1087
  • Journal article (peer-reviewed)abstract
    • We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 x 10(-4) in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 x 10(-9). This SNP showed robust replication in the second cohort (P = 1.86 x 10(-6)), and a combined analysis over the two stages yielded P = 2.53 x 10(-14). The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 x 10(-9), and rs3849942, with P = 1.01 x 10(-8)) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.
  •  
16.
  • Bogaert, Elke, et al. (author)
  • Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis
  • 2012
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 33:2, s. 418-420
  • Journal article (peer-reviewed)abstract
    • Excitotoxicity is thought to play a pathogenic role in amyotrophic lateral sclerosis (ALS). Excitotoxic motor neuron death is mediated through the Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type of glutamate receptors and Ca(2+) permeability is determined by the GluR2 subunit. We investigated whether polymorphisms or mutations in the GluR2 gene (GRIA2) predispose patients to ALS. Upon sequencing 24 patients and 24 controls no nonsynonymous coding variants were observed but 24 polymorphisms were identified, 9 of which were novel. In a screening set of 310 Belgian ALS cases and 794 healthy controls and a replication set of 3157 cases and 5397 controls from 6 additional populations no association with susceptibility, age at onset, or disease duration was observed. We conclude that polymorphisms in the GluR2 gene (GRIA2) are not a major contributory factor in the pathogenesis of ALS.
  •  
17.
  • Dewan, Ramita, et al. (author)
  • Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
  • 2021
  • In: Neuron. - : Elsevier BV. - 1097-4199 .- 0896-6273. ; 109:3
  • Journal article (peer-reviewed)abstract
    • We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.
  •  
18.
  • Diekstra, Frank P., et al. (author)
  • Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS
  • 2012
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e35333-
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 x 10(-51)) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for ALS.
  •  
19.
  • Ingre, Caroline, 1977-, et al. (author)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • In: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Journal article (peer-reviewed)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
20.
  • Moisse, Matthieu, et al. (author)
  • The Effect of SMN Gene Dosage on ALS Risk and Disease Severity
  • 2021
  • In: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 89:4, s. 686-697
  • Journal article (peer-reviewed)abstract
    • Objective: The role of the survival of motor neuron (SMN) gene in amyotrophic lateral sclerosis (ALS) is unclear, with several conflicting reports. A decisive result on this topic is needed, given that treatment options are available now for SMN deficiency.Methods: In this largest multicenter case control study to evaluate the effect of SMN1 and SMN2 copy numbers in ALS, we used whole genome sequencing data from Project MinE data freeze 2. SMN copy numbers of 6,375 patients with ALS and 2,412 controls were called from whole genome sequencing data, and the reliability of the calls was tested with multiplex ligation-dependent probe amplification data.Results: The copy number distribution of SMN1 and SMN2 between cases and controls did not show any statistical differences (binomial multivariate logistic regression SMN1 p = 0.54 and SMN2 p = 0.49). In addition, the copy number of SMN did not associate with patient survival (Royston-Parmar; SMN1 p = 0.78 and SMN2 p = 0.23) or age at onset (Royston-Parmar; SMN1 p = 0.75 and SMN2 p = 0.63).Interpretation: In our well-powered study, there was no association of SMN1 or SMN2 copy numbers with the risk of ALS or ALS disease severity. This suggests that changing SMN protein levels in the physiological range may not modify ALS disease course. This is an important finding in the light of emerging therapies targeted at SMN deficiencies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 27
Type of publication
journal article (27)
Type of content
peer-reviewed (26)
other academic/artistic (1)
Author/Editor
Landers, John E. (25)
van den Berg, Leonar ... (22)
Al-Chalabi, Ammar (21)
Veldink, Jan H. (20)
Silani, Vincenzo (19)
Andersen, Peter M. (18)
show more...
Robberecht, Wim (18)
Hardiman, Orla (17)
van Es, Michael A (17)
van Damme, Philip (16)
Shaw, Christopher E. (16)
Ticozzi, Nicola (15)
Shaw, Pamela J. (15)
Morrison, Karen E. (15)
Glass, Jonathan D. (14)
van Rheenen, Wouter (13)
Weber, Markus (12)
Ludolph, Albert C. (11)
Shatunov, Aleksey (10)
Ratti, Antonia (10)
de Carvalho, Mamede (9)
Diekstra, Frank P (9)
Fogh, Isabella (8)
Corcia, Philippe (8)
Chio, Adriano (8)
McLaughlin, Russell ... (8)
Andersen, Peter M., ... (7)
Birve, Anna (7)
Weishaupt, Jochen H. (7)
Meininger, Vincent (7)
D'Alfonso, Sandra (6)
Gotkine, Marc (6)
Vourc’h, Patrick (6)
Uitterlinden, André ... (6)
Blauw, Hylke M (6)
Couratier, Philippe (5)
Drory, Vivian (5)
Pinto, Susana (5)
Mora Pardina, Jesus ... (5)
Başak, Nazli A. (5)
Iacoangeli, Alfredo (5)
Taroni, Franco (5)
Corrado, Lucia (5)
Rivadeneira, Fernand ... (5)
Hofman, Albert (5)
Lemmens, Robin (5)
Calvo, Andrea (5)
Estrada, Karol (5)
van Vught, Paul W J (5)
Groen, Ewout J N (5)
show less...
University
Umeå University (25)
Karolinska Institutet (4)
University of Gothenburg (1)
Stockholm University (1)
Lund University (1)
Language
English (27)
Research subject (UKÄ/SCB)
Medical and Health Sciences (24)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view