SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lasota J. P.) "

Sökning: WFRF:(Lasota J. P.)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Kluzniak, W., et al. (författare)
  • QPOs in cataclysmic variables and in X-ray binaries
  • 2005
  • Ingår i: Astron. Astrophys.. - : EDP Sciences. - 0004-6361. ; 440
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations, reported by Warner and Woudt, of dwarf nova oscillations (DNOs) exhibiting frequency drift, period doubling, and 1:2:3 harmonic structure, can be understood as disc oscillations that are excited by perturbations at the spin frequency of the white dwarf or of its equatorial layers. Similar quasiperiodic disc oscillations in black hole low-mass X-ray binary (LMXB) transients in a 2:3 frequency ratio show no evidence of frequency drift and correspond to two separate modes of disc oscillation excited by an internal resonance. Just as no effects of general relativity play a role in white dwarf DNOs, no stellar surface or magnetic field effects need be invoked to explain the black hole QPOs.
  •  
12.
  • Lasota, J. P., et al. (författare)
  • Extracting black-hole rotational energy: The generalized Penrose process
  • 2014
  • Ingår i: Physical Review D. - 1550-7998. ; 89:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In the case involving particles, the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor T-mu nu and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks," we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to similar to 300% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.
  •  
13.
  • Lasota, J. P., et al. (författare)
  • The slimming effect of advection on black-hole accretion flows
  • 2016
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 1432-0746 .- 0004-6361. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R less than or similar to 1) or thick (H/R > 1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. Aims. We wish to establish under what conditions slim accretion flows become thick. Methods. We use analytical equations, numerical 1 + 1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates. Results. We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. Conclusions. At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.
  •  
14.
  • Sadowski, A., et al. (författare)
  • Energy flows in thick accretion discs and their consequences for black hole feedback
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:4, s. 3915-3928
  • Tidskriftsartikel (refereegranskat)abstract
    • We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is 3 per cent - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.
  •  
15.
  • Vincent, F. H., et al. (författare)
  • Geometric modeling of M87*as a Kerr black hole or a non-Kerr compact object
  • 2021
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Event Horizon Telescope (EHT) collaboration recently obtained the first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. This provides a fascinating probe of the properties of matter and radiation in strong gravitational fields. It is important to determine from the analysis of these results what can and cannot be inferred about the nature of spacetime around M87*Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohydrodynamic models, this new approach has the advantage that it is independent of the turbulent character of the flow and is controlled by only a few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87*, assuming that it is either a Kerr black hole or an alternative compact object.Methods. We computed the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations were performed assuming different spacetimes, such as Kerr, Minkowski, nonrotating ultracompact star, rotating boson star, or Lamy spinning wormhole. We performed numerical fits of these models to the EHT data.Results. We discuss the highly lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties and not only to gravitation. This fact is illustrated by the notion of the secondary ring, which we introduce. Our model of a spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in a similar quality of numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We note that future developments of the EHT could alter this situation.Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime to be able to test the Kerr paradigm unambiguously. More sophisticated treatments of non-Kerr spacetimes and more advanced observations are needed to proceed further in this direction.
  •  
16.
  • Wielgus, M., et al. (författare)
  • Limits on thickness and efficiency of Polish doughnuts in application to the ULX sources
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Polish doughnuts (PDs) are geometrically thick disks that rotate with super-Keplerian velocities in their innermost parts, and whose long and narrow funnels along rotation axes collimate the emerging radiation into beams. In this paper we construct an extremal family of PDs that maximize both geometrical thickness and radiative efficiency. We then derive upper limits for these quantities and subsequently for the related ability to collimate radiation. PDs with such extreme properties may explain the observed properties of ultraluminous X-ray sources without the need for the black hole masses to exceed ~10 M⊙. However, we show that strong advective cooling, which is expected to be one of the dominant cooling mechanisms in accretion flows with super-Eddington accretion rates, tends to reduce the geometrical thickness and luminosity of PDs substantially. We also show that the beamed radiation emerging from the PD funnels corresponds to isotropic luminosities that obey Lcol ≈ 0.1 Mc2 for M 蠑 MEdd, and not the familiar and well-known logarithmic relation, L ~ ln M. © 2016 ESO.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy