SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liberles David A.) "

Sökning: WFRF:(Liberles David A.)

  • Resultat 11-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Konrad, Anke, et al. (författare)
  • The Phylogenetic Distribution and Evolution of Enzymes Within the Thymidine Kinase 2-like Gene Family in Metazoa
  • 2014
  • Ingår i: Journal of Molecular Evolution. - : Springer Science and Business Media LLC. - 0022-2844 .- 1432-1432. ; 78:3-4, s. 202-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
  •  
12.
  • Peltier, Jean-Benoît, et al. (författare)
  • Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction
  • 2002
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 14:1, s. 211-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus.
  •  
13.
  • Roth, Christian, et al. (författare)
  • Evolution after gene duplication : Models, mechanisms, sequences, systems, and organisms
  • 2007
  • Ingår i: J EXP ZOOL PART B. - : Wiley. - 1552-5007 .- 1552-5015. ; 308B:1, s. 58-73
  • Forskningsöversikt (refereegranskat)abstract
    • Gene duplication is postulated to have played a major role in the evolution of biological novelty. Here, gene duplication is examined across levels of biological organization in an attempt to create a unified picture of the mechanistic process by which gene duplication can have played a role in generating biodiversity. Neofunctionalization and subfunctionalization have been proposed as important processes driving the retention of duplicate genes. These models have foundations in population genetic theory, which is now being refined by explicit consideration of the structural constraints placed upon genes encoding proteins through physical chemistry. Further, such models can be examined in the context of comparative genomics, where an integration of gene-level evolution and species-level evolution allows an assessment of the frequency of duplication and the fate of duplicate genes. This process, of course, is dependent upon the biochemical role that duplicated genes play in biological systems, which is in turn dependent upon the mechanism of duplication: whole genome duplication involving a co-duplication of interacting partners vs. single gene duplication. Lastly, the role that these processes may have played in driving speciation is examined.
  •  
14.
  • Tinta, Tinkara, et al. (författare)
  • Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
  • 2012
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968 .- 0378-1097. ; 331:2, s. 120-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleoside kinases (dNKs) are essential in the mammalian cell but their 'importance' in bacteria, especially aquatic ones, is less clear. We studied two aquatic bacteria, Gram-negative Flavobacterium psychrophilum JIP02/86 and Polaribacter sp. MED152, for their ability to salvage deoxyribonucleosides (dNs). Both had a Gram-positive-type thymidine kinase (TK1), which could phosphorylate thymidine, and one non-TK1 dNK, which could efficiently phosphorylate deoxyadenosine and slightly also deoxycytosine. Surprisingly, the four tested dNKs could not phosphorylate deoxyguanosine, and apparently, these two bacteria are missing this activity. When tens of available aquatic bacteria genomes were examined for the presence of dNKs, a majority had at least a TK1-like gene, but several lacked any dNKs. Apparently, among aquatic bacteria, the role of the dN salvage varies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy