SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ludolph Albert C) "

Sökning: WFRF:(Ludolph Albert C)

  • Resultat 31-40 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Freischmidt, Axel, et al. (författare)
  • A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis
  • 2021
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 144:4, s. 1214-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.
  •  
32.
  • Freischmidt, Axel, et al. (författare)
  • Association of Mutations in TBK1 With Sporadic and Familial Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
  • 2017
  • Ingår i: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 74:1, s. 110-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative syndromes that occur sporadically or have been associated with mostly dominant inheritance of mutations in more than 30 genes. A critical issue is whether all reported mutations are disease causing or are coincidental findings. In this review we analyze the pathogenicity of nonsynonymous variants in the newly discovered gene encoding TANK-binding kinase 1 (TBK1). The available data suggest that mutations in TBK1 that cause a 50% reduction of TBK1 protein levels are pathogenic. In most cases, the almost complete loss of expression of the mutated TBK1 allele is due to loss-of-function mutations creating a premature termination codon and the degradation of the mutated messenger RNA by nonsense-mediated messenger RNA decay. In addition, TBK1 protein levels reduced by 50% have been proven for specific in-frame deletions of 1 or several amino acids, probably due to increased degradation of the mutated protein. Evaluation of many of the TBK1 missense mutations found in patients with ALS or FTD is prevented by missing data demonstrating cosegregation of the variants and incomplete knowledge about the TBK1 functions relevant for neurodegeneration. These findings suggest that haploinsufficiency of TBK1 is causative for ALS and FTD regardless of the type of mutation. Evaluation of TBK1 variants that do not cause haploinsufficiency is not possible without data demonstrating cosegregation.
  •  
33.
  •  
34.
  • Freischmidt, Axel, et al. (författare)
  • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
  • 2015
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 18:5, s. 631-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.
  •  
35.
  • Freischmidt, Axel, et al. (författare)
  • Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137:11, s. 2938-2950
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.
  •  
36.
  • Gispert, Suzana, et al. (författare)
  • The modulation of Amyotrophic Lateral Sclerosis risk by Ataxin-2 intermediate polyglutamine expansions is a specific effect
  • 2012
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 45:1, s. 356-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Full expansions of the polyglutamine domain (polyQ >= 34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27 <= polyQ <= 33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30 <= polyQ <= 35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor. (C) 2011 Elsevier Inc. All rights reserved.
  •  
37.
  • Gorges, Martin, et al. (författare)
  • Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis
  • 2017
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 88:12, s. 1033-1041
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Our objective was to study the hypothalamic volume in a cohort of patients with amyotrophic lateral sclerosis (ALS) including symptomatic and presymptomatic ALS mutation carriers.Methods: High-resolution three-dimensional T1-weighted MRI datasets from 251 patients with sporadic ALS, 19 symptomatic and 32 presymptomatic ALS mutation carriers and 112 healthy controls (HC) were retrospectivally registered for manual delineation of the hypothalamus. The volume of the hypothalamus, in total or subdivided, was normalised to the intracranial volume and adjusted to age. Correlation analyses were performed with clinical and metabolic outcomes. Pathologically defined ALS stages were determined in vivo by diffusion tensor imaging (DTI).Results: We observed a severe atrophy of the hypothalamus both in patients with sporadic ALS (-21.8%, p<0.0001) and symptomatic ALS mutation carriers (-13.4%, p<0.001). The atrophy in patients with sporadic ALS was observed in both the anterior (-27.6% p<0.0001) and the posterior parts of the hypothalamus (-17.7%, p<0.0001). Notably, this atrophy was also observed in presymptomatic ALS mutation carriers (-15.5%, p<0.001) and was unrelated to whole brain volume atrophy or disease stage as assessed using DTI or functional status. Hypothalamic volume was correlated with body mass index (BMI) in patients with sporadic ALS (p=0.0434, Ρ=+0.1579), and this correlation was much stronger in patients with familial ALS (fALS) (p=0.0060, Ρ=+0.6053). Anterior hypothalamic volume was correlated with age at onset, but not with survival after MRI.Conclusions: Hypothalamus is atrophied in ALS, even in premorbid stages, and correlates with BMI, especially in fALS. Decreased anterior hypothalamic volume is associated with earlier onset of disease.
  •  
38.
  • Helferich, Anika M., et al. (författare)
  • Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS
  • 2018
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 75:23, s. 4301-4319
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
  •  
39.
  • Higelin, Julia, et al. (författare)
  • NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons
  • 2018
  • Ingår i: Stem Cell Research. - : Elsevier. - 1873-5061 .- 1876-7753. ; 30, s. 150-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in genes coding for proteins involved in DNA damage response (DDR) and repair, such as C9orf72 and FUS (Fused in Sarcoma), are associated with neurodegenerative diseases and lead to amyotrophic lateral sclerosis (ALS). Heterozygous loss-of-function mutations in NEK1 (NIMA-related kinase 1) have also been recently found to cause ALS. NEK1 codes for a multifunctional protein, crucially involved in mitotic checkpoint control and DDR. To resolve pathological alterations associated with NEK1 mutation, we compared hiPSC-derived motoneurons carrying a NEK1 mutation with mutant C9orf72 and wild type neurons at basal level and after DNA damage induction. Motoneurons carrying a C9orf72 mutation exhibited cell specific signs of increased DNA damage. This phenotype was even more severe in NEK1c.2434A>T neurons that showed significantly increased DNA damage at basal level and impaired DDR after induction of DNA damage in an maturation-dependent manner. Our results provide first mechanistic insight in pathophysiological alterations induced by NEK1 mutations and point to a converging pathomechanism of different gene mutations causative for ALS. Therefore, our study contributes to the development of novel therapeutic strategies to reduce DNA damage accumulation in neurodegenerative diseases and ALS.
  •  
40.
  • Ingre, Caroline, 1977-, et al. (författare)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • Ingår i: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 64

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy