SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mannermaa Arto) "

Search: WFRF:(Mannermaa Arto)

  • Result 21-27 of 27
Sort/group result
   
EnumerationReferenceCoverFind
21.
  • Stevens, Kristen N, et al. (author)
  • 19p13.1 is a triple negative-specific breast cancer susceptibility locus
  • 2012
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 72, s. 1795-
  • Journal article (peer-reviewed)abstract
    • The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.
  •  
22.
  • Stevens, Kristen N., et al. (author)
  • Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer
  • 2011
  • In: Cancer Research. - 1538-7445. ; 71:19, s. 6240-6249
  • Journal article (peer-reviewed)abstract
    • Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer. Cancer Res; 71(19); 6240-9. (C)2011 AACR.
  •  
23.
  • Vuorela, Mikko, et al. (author)
  • Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility.
  • 2011
  • In: Breast cancer research and treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 130:3, s. 1003-1010
  • Journal article (peer-reviewed)abstract
    • RAD51C, a RAD51 paralogue involved in homologous recombination, is a recently established Fanconi anemia and breast cancer predisposing factor. In the initial report, RAD51C mutations were shown to confer a high risk for both breast and ovarian tumors, but most of the replication studies published so far have failed to identify any additional susceptibility alleles. Here, we report a full mutation screening of the RAD51C gene in 147 Finnish familial breast cancer cases and in 232 unselected ovarian cancer cases originating from Finland and Sweden. In addition, in order to resolve whether common RAD51C SNPs are risk factors for breast cancer, we genotyped five tagging single nucleotide polymorphisms, rs12946522, rs304270, rs304283, rs17222691, and rs28363312, all located within the gene, from 993 Finnish breast cancer cases and 871 controls for cancer associated variants. Whereas, none of the studied common SNPs associated with breast cancer susceptibility, mutation analysis revealed two clearly pathogenic alterations. RAD51C c.-13_14del27 was observed in one familial breast cancer case and c.774delT in one unselected ovarian cancer case, thus confirming that RAD51C mutations are implicated in breast and ovarian cancer predisposition, although their overall frequency seems to be low. Independent identification of the very recently reported RAD51C c.774delT mutation in yet another patient originating from Sweden suggests that it might be a recurrent mutation in that population and should be studied further. The reliable estimation of the clinical implications of carrying a defective RAD51C allele still requires the identification of additional mutation positive families.
  •  
24.
  •  
25.
  • Yang, Xin, et al. (author)
  • Cancer risks associated with germline PALB2 pathogenic variants : An international study of 524 families
  • 2020
  • In: Journal of Clinical Oncology. - 0732-183X. ; 38:7, s. 674-685
  • Journal article (peer-reviewed)abstract
    • PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
  •  
26.
  • Zanti, Maria, et al. (author)
  • A Likelihood Ratio Approach for Utilizing Case-Control Data in the Clinical Classification of Rare Sequence Variants : Application to BRCA1 and BRCA2
  • 2023
  • In: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 2023
  • Journal article (peer-reviewed)abstract
    • A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity-findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.
  •  
27.
  • Zeng, Chenjie, et al. (author)
  • Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus
  • 2016
  • In: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 18
  • Journal article (peer-reviewed)abstract
    • Background: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. Results: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 x 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 x 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 x 10(-4)) identified in the general populations, and rs113824616 (P = 7 x 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. Conclusion: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 21-27 of 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view