SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mannervik Bengt) "

Sökning: WFRF:(Mannervik Bengt)

  • Resultat 11-20 av 232
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Aslam, Muhammad (författare)
  • The fruit fly Drosophila melanogaster GSTE6 and E7; characterization, immobilization and transgenic overexpression
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glutathione transferases (GSTs) are multifunctional enzymes that are universally distributed in most eukaryotes and prokaryotes. They play a pivotal role in the metabolism and detoxication of numerous endogenous and exogenous electrophiles by conjugating them with ubiquitous tripeptide glutathione. In this study we have immobilized two heterologously expressed and purified Epsilon-class enzymes, GSTE6 and GSTE7, from of Drosophila melanogaster on nanoporous alumina membranes. The membranes were derivatized with 3-aminopropyl-triethoxysilane and the amino groups were activated with carbonyldiimidazole to allow coupling of the enzymes. Kinetic analyses of the immobilized enzymes were carried out in a circulating flow system using CDNB (1-chloro-2,4-dinitrobenzene) as substrate, followed by specificity screening with alternative substrates. A good correlation was observed between the substrate screening data for immobilized enzyme and corresponding data for the enzymes in solution. The stability of the immobilized enzymes was virtually identical to that for the enzymes in solution and no leakage of enzyme from the matrix could be observed.Additionally, we have investigated the catalytic activities of GSTE7 with organic isothiocyanates (ITCs). These reactive compounds are strong electrophilic molecules produced in plants by the hydrolysis of glucosinolates and exert toxicity in biological tissues.  Our in vitro studies, showed high catalytic activity of GSTE7 towards ITCs. We have then explored the in vivo effect of phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC) in transgenic fruit flies overexpressing GSTE7. A concentration of 0.25 mM PEITC in standard fly food was shown to be toxic to flies and significantly shortened the lifespan. We noticed that overexpression of GSTE7 could protect females from the initial acute toxic effects, but had no positive effect on long term exposure. The effect on males seems to be the opposite to that of females, where a higher mortality was seen in fly males overexpressing GST E7 after one week of exposure.  On the other hand 1mM concentration of AITC showed no toxic effects, but dramatically reduced the oviposition activity of wild-type flies in comparison to the transgenic flies.
  •  
12.
  •  
13.
  • Balogh, Larissa M., et al. (författare)
  • Structural Analysis of a Glutathione Transferase A1-1 Mutant Tailored for High Catalytic Efficiency with Toxic Alkenals
  • 2009
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 48:32, s. 7698-7704
  • Tidskriftsartikel (refereegranskat)abstract
    • The specificity of human glutathione transferase (GST) A1-1 is drastically altered to favor alkenal substrates in the GIMFhelix mutant designed to mimic first-sphere interactions utilized by GSTA4-4. This redesign serves as a model for improving our understanding of the structural determinants that contribute to the distinct specificities of alpha class GSTs. Herein we report the first crystal structures of GIMFhelix, both in complex with GSH and in apo form at 1.98 and 2.38 angstrom resolution. In contrast to the preorganized hydrophobic binding pocket that accommodates alkenals in GSTA4-4, GSTA1-1 includes a dynamic alpha 9 helix that undergoes a ligand-dependent localization to complete the active site. Comparisons of the GIMFhelix structures with previously reported structures show a striking similarity with the GSTA4-4 active site obtained within an essentially GSTA1-1 scaffold and reveal the 0 helix assumes a similar localized structure regardless of active site occupancy in a manner resembling that of GSTA4-4. However, Are cannot fully account for all the structural elements important in GSTA4-4 within the mutant's active site. The contribution of Phe10 to the Tyr212-Phe10-Phe220 network prevents complete C-terminal Closure and demonstrates that the presence of Phe10 within the context of a GSTA4-4-like active site may ultimately hinder Phe220, a key C-terminal residue, from effectively contributing to the active site. In total, these results illustrate the remaining structural differences presumably reflected in the previously reported catalytic efficiencies of GIMFhelix and GSTA4-4 and emphasize the F10P mutation as being necessary to completely accomplish the transformation to a highly specific GST from the more promiscuous GSTA1-1 enzyme.
  •  
14.
  • Balogh, Larissa M., et al. (författare)
  • Substrate Specificity Combined with Stereopromiscuity in Glutathione Transferase A4-4-Dependent Metabolism of 4-Hydroxynonenal
  • 2010
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 49:7, s. 1541-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and ail engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward ail endogenously formed toxin.
  •  
15.
  •  
16.
  •  
17.
  • Blikstad, Cecilia, et al. (författare)
  • Emergence of a novel highly specific and catalytically efficient enzyme from a naturally promiscuous glutathione transferase
  • 2008
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434 .- 0304-4165. ; 1780:12, s. 1458-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Redesign of glutathione transferases (GSTs) has led to enzymes with remarkably enhanced catalytic properties. Exchange of substrate-binding residues in GST A1-1 created a GST A4-4 mimic, called GIMFhelix, with >300-fold improved activity with nonenal and suppressed activity with other substrates. In the present investigation GIMFhelix was compared with the naturally-evolved GSTs A1-1 and A4-4 by determining catalytic efficiencies with nine alternative substrates. The enzymes can be represented by vectors in multidimensional substrate-activity space, and the vectors of GIMFhelix and GST A1-1, expressed in kcat/Km values for the alternative substrates, are essentially orthogonal. By contrast, the vectors of GIMFhelix and GST A4-4 have approximately similar lengths and directions. The broad substrate acceptance of GST A1-1 contrasts with the high selectivity of GST A4-4 and GIMFhelix for alkenal substrates. Multivariate analysis demonstrated that among the diverse substrates used, nonenal, cumene hydroperoxide, and androstenedione are major determinants in the portrayal of the three enzyme variants. These GST substrates represent diverse chemistries of naturally occurring substrates undergoing Michael addition, hydroperoxide reduction, and steroid double-bond isomerization, respectively. In terms of function, GIMFhelix is a novel enzyme compared to its progenitor GST A1-1 in spite of 94% amino-acid sequence identity between the enzymes. The redesign of GST A1-1 into GIMFhelix therefore serves as an illustration of divergent evolution leading to novel enzymes by minor structural modifications in the active site. Notwithstanding low sequence identity (60%), GIMFhelix is functionally an isoenzyme of GST A4-4.
  •  
18.
  • Bocedi, Alessio, et al. (författare)
  • Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 291:52, s. 26739-26749
  • Tidskriftsartikel (refereegranskat)abstract
    • Negative cooperativity in enzyme reactions, in which the first event makes subsequent events less favorable, is sometimes well understood at the molecular level, but its physiological role has often been obscure. Negative cooperativity occurs in human glutathione transferase (GST) GSTP1-1 when it binds and neutralizes a toxic nitric oxide adduct, the dinitrosyl-diglutathionyl iron complex (DNDGIC). However, the generality of this behavior across the divergent GST family and its evolutionary significance were unclear. To investigate, we studied 16 different GSTs, revealing that negative cooperativity is present only in more recently evolved GSTs, indicating evolutionary drift in this direction. In some variants, Hill coefficients were close to 0.5, the highest degree of negative cooperativity commonly observed (although smaller values of n(H) are theoretically possible). As DNDGIC is also a strong inhibitor of GSTs, we suggest negative cooperativity might have evolved to maintain a residual conjugating activity of GST against toxins even in the presence of high DNDGIC concentrations. Interestingly, two human isoenzymes that play a special protective role, safeguarding DNA from DNDGIC, display a classical half-of-the-sites interaction. Analysis of GST structures identified elements that could play a role in negative cooperativity in GSTs. Beside the well known lock-and-key and clasp motifs, other alternative structural interactions between subunits may be proposed for a few GSTs. Taken together, our findings suggest the evolution of self-preservation of enzyme function as a novel facility emerging from negative cooperativity.
  •  
19.
  • Bolelli, K., et al. (författare)
  • Synthesis and activity mechanism of some novel 2-substituted benzothiazoles as hGSTP1-1 enzyme inhibitors
  • 2017
  • Ingår i: SAR and QSAR in environmental research (Print). - 1062-936X .- 1029-046X. ; 28:11, s. 927-940
  • Tidskriftsartikel (refereegranskat)abstract
    • Human GSTP1-1 is one of the most important proteins, which overexpresses in a large number of human tumours and is involved in the development of resistance to several anticancer drugs. So, it has become an important target in cancer treatment. In this study, 12 benzothiazole derivatives were synthesized and screened for their in vitro inhibitory activity for hGSTP1-1. Among these compounds, two of them (compounds #2 and #5) have been found to be the leads when compared with the reference drug etoposide. In order to analyse the structure-activity relationships (SARs) and to investigate the binding side interactions of the observed lead compounds, a HipHop pharmacophore model was generated and the molecular docking studies were performed by using CDocker method. In conclusion, it is observed that the lead compounds #2 and #5 possessed inhibitory activity on the hGSTP1-1 by binding to the H-site as a substrate in which the para position of the phenyl ring of the benzamide moiety on the benzothiazole ring is important. Substitution at this position with a hydrophobic group that reduces the electron density at the phenyl ring is required for the interaction with the H side active residue Tyr108.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 232
Typ av publikation
tidskriftsartikel (189)
doktorsavhandling (17)
annan publikation (9)
forskningsöversikt (6)
bokkapitel (4)
licentiatavhandling (4)
visa fler...
bok (1)
konferensbidrag (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (194)
övrigt vetenskapligt/konstnärligt (36)
populärvet., debatt m.m. (2)
Författare/redaktör
Mannervik, Bengt (212)
Widersten, Mikael (31)
Larsson, Anna-Karin (16)
Shokeer, Abeer (13)
Kurtovic, Sanela (13)
Danielson, U. Helena (12)
visa fler...
Mannervik, Bengt, Pr ... (12)
Zhang, Wei (11)
Ivarsson, Ylva (10)
Johansson, Ann Sofie (10)
Musdal, Yaman (10)
Sjödin, Birgitta (10)
Stenberg, Gun (9)
Hellman, Ulf (9)
Segura-Aguilar, Juan (9)
Tars, Kaspars (8)
Mannervik, Bengt, 19 ... (8)
Raffalli-Mathieu, Fr ... (7)
Söderström, Mats (6)
Morgenstern, Ralf (6)
Dourado, Daniel F. A ... (6)
Emrén, Lars O. (6)
Olin, Birgit (6)
Ramos, Maria Joao (5)
Fernandes, Pedro Ale ... (5)
Kleywegt, Gerard J. (5)
Munoz, Patricia (5)
Hansson, Lars O. (5)
Bergman, Birgitta (4)
Abe, Hiroshi (4)
Jemth, Per (4)
Atkins, William M. (4)
Edalat, Maryam (4)
Eklund, Birgitta I. (4)
Runarsdottir, Arna (4)
Fedulova, Natalia, 1 ... (4)
Zhang, Jie (3)
Baltzer, Lars (3)
Le Trong, Isolde (3)
Jakobsson, Emma (3)
Hammarström, Sven (3)
Nalvarte, Ivan (3)
Björnestedt, Robert (3)
Gustafsson, Ann (3)
Broo, Kerstin (3)
Huenchuguala, Sandro (3)
Ito, Yoshihiro (3)
Govindarajan, Sridha ... (3)
Hegazy, Usama (3)
Grehn, Leif (3)
visa färre...
Lärosäte
Uppsala universitet (178)
Stockholms universitet (72)
Karolinska Institutet (15)
Linköpings universitet (6)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
visa fler...
Göteborgs universitet (1)
visa färre...
Språk
Engelska (214)
Odefinierat språk (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (146)
Medicin och hälsovetenskap (24)
Teknik (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy