SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mazzali P. A.) "

Sökning: WFRF:(Mazzali P. A.)

  • Resultat 51-60 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  •  
52.
  • Reguitti, A., et al. (författare)
  • SN 2021foa, a transitional event between a Type IIn (SN 2009ip-like) and a Type Ibn supernova
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometric and spectroscopic data of the unusual interacting supernova (SN) 2021foa. It rose to an absolute magnitude peak of Mr = −18 mag in 20 days. The initial light curve decline shows some luminosity fluctuations before a long-lasting flattening. A faint source (Mr ∼ −14 mag) was detected in the weeks preceding the main event, showing a slowly rising luminosity trend. The r-band absolute light curve is very similar to those of SN 2009ip-like events, with a faint and shorter duration brightening (‘Event A’) followed by a much brighter peak (‘Event B’). The early spectra of SN 2021foa show a blue continuum with narrow (∼400 km s−1) H emission lines that, two weeks later, reveal a complex profile, with a narrow P Cygni on top of an intermediate-width (∼2700 km s−1) component. At +12 days, metal lines in emission appear and He I lines become very strong, with He I λ5876 reaching half of the Hα luminosity, much higher than in previous SN 2009ip-like objects. We propose that SN 2021foa is a transitional event between the H-rich SN 2009ip-like SNe and the He-rich Type Ibn SNe.
  •  
53.
  • Valenti, S., et al. (författare)
  • The Carbon-rich Type Ic SN 2007gr : The Photospheric Phase
  • 2008
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 673:2, s. L155-L158
  • Tidskriftsartikel (refereegranskat)abstract
    • The first 2 months of spectroscopic and photometric monitoring of the nearby Type Ic SN 2007gr are presented. The very early discovery (less than 5 days after the explosion) and the relatively short distance of the host galaxy motivated an extensive observational campaign. SN 2007gr shows an average peak luminosity but unusually narrow spectral lines and an almost flat photospheric velocity profile. The detection of prominent carbon features in the spectra is shown and suggests a wide range in carbon abundance in stripped-envelope supernovae. SN 2007gr may be an important piece in the puzzle of the observed diversity of CC SNe.
  •  
54.
  • Milisavljevic, Dan, et al. (författare)
  • MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei : TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 767:1, s. 71-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within similar to 1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity (greater than or similar to 12,000 km s(-1)) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v approximate to 0.13 c and a progenitor star average mass-loss rate of (M) over dot approximate to 1.4 x 10(-5) M-circle dot yr(-1) (assuming wind velocity v(w) = 10(3) km s(-1)). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M-circle dot), compact (R-* less than or similar to 1 x 10(11) cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.
  •  
55.
  • Taubenberger, S., et al. (författare)
  • High luminosity, slow ejecta and persistent carbon lines : SN 2009dc challenges thermonuclear explosion scenarios
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 412:4, s. 2735-2762
  • Forskningsöversikt (refereegranskat)abstract
    • Extended optical and near-IR observations reveal that SN 2009dc shares a number of similarities with normal Type Ia supernovae (SNe Ia), but is clearly overluminous, with a (pseudo-bolometric) peak luminosity of log (L) = 43.47 (erg s-1). Its light curves decline slowly over half a year after maximum light [delta m(15)(B)(true) = 0.71], and the early-time near-IR light curves show secondary maxima, although the minima between the first and the second peaks are not very pronounced. The bluer bands exhibit an enhanced fading after similar to 200 d, which might be caused by dust formation or an unexpectedly early IR catastrophe. The spectra of SN 2009dc are dominated by intermediate-mass elements and unburned material at early times, and by iron-group elements at late phases. Strong C ii lines are present until similar to 2 weeks past maximum, which is unprecedented in thermonuclear SNe. The ejecta velocities are significantly lower than in normal and even subluminous SNe Ia. No signatures of interaction with a circumstellar medium (CSM) are found in the spectra. Assuming that the light curves are powered by radioactive decay, analytic modelling suggests that SN 2009dc produced similar to 1.8 M(circle dot) of 56Ni assuming the smallest possible rise time of 22 d. Together with a derived total ejecta mass of similar to 2.8 M(circle dot), this confirms that SN 2009dc is a member of the class of possible super-Chandrasekhar-mass SNe Ia similar to SNe 2003fg, 2006gz and 2007if. A study of the hosts of SN 2009dc and other superluminous SNe Ia reveals a tendency of these SNe to explode in low-mass galaxies. A low metallicity of the progenitor may therefore be an important prerequisite for producing superluminous SNe Ia. We discuss a number of possible explosion scenarios, ranging from super-Chandrasekhar-mass white-dwarf progenitors over dynamical white-dwarf mergers and Type I SNe to a core-collapse origin of the explosion. None of the models seems capable of explaining all properties of SN 2009dc, so that the true nature of this SN and its peers remains nebulous.
  •  
56.
  • Chen, Ping, et al. (författare)
  • A 12.4-day periodicity in a close binary system after a supernova
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 253-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.
  •  
57.
  • Hachinger, S., et al. (författare)
  • Type Ia supernovae with and without blueshifted narrow Na I D lines - how different is their structure?
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 471:1, s. 491-506
  • Tidskriftsartikel (refereegranskat)abstract
    • In studies on intermediate-and high-resolution spectra of Type Ia supernovae (SNe Ia), some objects exhibit narrow Na I D absorptions often blueshifted with respect to the rest wavelength within the host galaxy. The absence of these in other SNe Ia may reflect that the explosions have different progenitors: blueshifted Na I D features might be explained by the outflows of 'single-degenerate' systems (binaries of a white dwarf with a non-degenerate companion). In this work, we search for systematic differences among SNe Ia for which the Na I D characteristics have been clearly established in previous studies. We perform an analysis of the chemical abundances in the outer ejecta of 13 'spectroscopically normal' SNe Ia (five of which show blueshifted Na lines), modelling time series of photospheric spectra with a radiative-transfer code. We find only moderate differences between 'blueshifted-Na', 'redshifted-Na' and 'no-Na' SNe Ia, so that we can neither conclusively confirm a 'one-scenario' nor a 'two-scenario' theory for normal SNe Ia. Yet, some of the trends we see should be further studied using larger observed samples: models for blueshifted-Na SNe tend to show higher photospheric velocities than no-Na SNe, corresponding to a higher opacity of the envelope. Consistently, blueshifted-Na SNe show hints of a somewhat larger iron-group content in the outer layers with respect to the no-Na subsample (and also to the redshifted-Na subsample). This agrees with earlier work where it was found that the light curves of no-Na SNe - often appearing in elliptical galaxies - are narrower, that is, decline more rapidly.
  •  
58.
  • Jerkstrand, A., et al. (författare)
  • Supersolar Ni/Fe production in the Type IIP SN 2012ec
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 448:3, s. 2482-2494
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] lambda lambda 6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M-circle dot. SN2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] lambda 7378. This line is produced by Ni-58, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] lambda 7378 and [Fe II] lambda 7155 (the progenitor of which is Ni-56) to derive a Ni/Fe production ratio of 0.20 +/- 0.07 (by mass), which is a factor 3.4 +/- 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 mu m line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.
  •  
59.
  • Fiore, Achille, et al. (författare)
  • Detailed spectrophotometric analysis of the superluminous and fast evolving SN 2019neq
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6473-6494
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2019neq was a very fast evolving superluminous supernova. At a redshift z = 0.1059, its peak absolute magnitude was −21.5 ± 0.2 mag in g band. In this work, we present data and analysis from an extensive spectrophotometric follow-up campaign using multiple observational facilities. Thanks to a nebular spectrum of SN 2019neq, we investigated some of the properties of the host galaxy at the location of SN 2019neq and found that its metallicity and specific star formation rate are in a good agreement with those usually measured for SLSNe-I hosts. We then discuss the plausibility of the magnetar and the circumstellar interaction scenarios to explain the observed light curves, and interpret a nebular spectrum of SN 2019neq using published SUMO radiative-transfer models. The results of our analysis suggest that the spin-down radiation of a millisecond magnetar with a magnetic field B ≃ 6×1014 G could boost the luminosity of SN 2019neq.
  •  
60.
  • Hachinger, S., et al. (författare)
  • How much H and He is 'hidden' in SNe Ib/c? - I. Low-mass objects
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 422:1, s. 70-88
  • Tidskriftsartikel (refereegranskat)abstract
    • H and He features in photospheric spectra have seldom been used to infer quantitatively the properties of Type IIb, Ib and Ic supernovae (SNe IIb, Ib and Ic) and their progenitor stars. Most radiative transfermodels ignored non-local thermodynamic equilibrium (NLTE) effects, which are extremely strong especially in the He-dominated zones. In this paper, a comprehensive set of model atmospheres for low-mass SNe IIb/Ib/Ic is presented. Long-standing questions, such as how much He can be contained in SNe Ic, where He lines are not seen, can thus be addressed. The state of H and He is computed in full NLTE, including the effect of heating by fast electrons. The models are constructed to represent iso-energetic explosions of the same stellar core with differently massive H/He envelopes on top. The synthetic spectra suggest that 0.06-0.14 M-circle dot of He and even smaller amounts of H suffice for optical lines to be present, unless ejecta asymmetries play a major role. This strongly supports the conjecture that low-mass SNe Ic originate from binaries where progenitor mass loss can be extremely efficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 65

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy