SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McKenna J. T. K.) "

Sökning: WFRF:(McKenna J. T. K.)

  • Resultat 11-20 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  •  
13.
  • Ahmadi, M., et al. (författare)
  • Observation of the 1S-2S transition in trapped antihydrogen
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 541:7638, s. 506-510
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hansch1 to a precision of a few parts in 10(15). Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen(2-4). The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 x 10(-10).
  •  
14.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
15.
  • Amole, C., et al. (författare)
  • The ALPHA antihydrogen trapping apparatus
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 735, s. 319-340
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.
  •  
16.
  • Baker, C. J., et al. (författare)
  • Laser cooling of antihydrogen atoms
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 592:7852, s. 35-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision(1). Slowing the translational motion of atoms and ions by application of such a force(2,3), known as laser cooling, was first demonstrated 40 years ago(4,5). It revolutionized atomic physics over the following decades(6-8), and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen(9), the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-alpha laser radiation(10,11), we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic(11-13) and gravitational(14) studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.
  •  
17.
  • Pirozhkov, A. S., et al. (författare)
  • Diagnostic of laser contrast using target reflectivity
  • 2009
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 94:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Using three different laser systems, we demonstrate a convenient and simple plasma based diagnostic of the contrast of high-power short-pulse lasers. The technique is based on measuring the specular reflectivity from a solid target. The reflectivity remains high even at relativistic intensities above 10(19) W/cm(2) in the case of a high-contrast prepulse-free laser. On the contrary, the specular reflectivity drops with increasing intensities in the case of systems with insufficient contrast due to beam breakup and increased absorption caused by preplasma.
  •  
18.
  • Ahmadi, M., et al. (författare)
  • Antihydrogen accumulation for fundamental symmetry tests
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vibrant programme of research. In this regard, a limiting factor in most experiments is the availability of large numbers of cold ground state antihydrogen atoms. Here, we describe how an improved synthesis process results in a maximum rate of 10.5 +/- 0.6 atoms trapped and detected per cycle, corresponding to more than an order of magnitude improvement over previous work. Additionally, we demonstrate how detailed control of electron, positron and antiproton plasmas enables repeated formation and trapping of antihydrogen atoms, with the simultaneous retention of atoms produced in previous cycles. We report a record of 54 detected annihilation events from a single release of the trapped anti-atoms accumulated from five consecutive cycles.
  •  
19.
  • Ahmadi, M., et al. (författare)
  • Investigation of the fine structure of antihydrogen
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7795, s. 375-380
  • Tidskriftsartikel (refereegranskat)abstract
    • At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system. Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.
  •  
20.
  • Ahmadi, M., et al. (författare)
  • Observation of the 1S-2P Lyman-alpha transition in antihydrogen
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 561:7722, s. 211-217
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-alpha line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-alpha forest('3) of absorption lines at different redshifts. Here we report the observation of the Lyman-alpha transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 +/- 0.12 gigahertz (1 sigma uncertainty) and agrees with the prediction for hydrogen to a precision of 5 x 10(-8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter ;and antimatter. Alongside the ground-state hyperfine(4,5) and 1S-2S transitions(6,7) recently observed in antihydrogen, the Lyman-alpha transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 59
Typ av publikation
tidskriftsartikel (51)
forskningsöversikt (4)
konferensbidrag (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
van der Werf, D. P. (18)
Bertsche, W. (18)
Cesar, C. L. (18)
Charlton, M. (18)
Eriksson, S. (18)
Fajans, J. (18)
visa fler...
Friesen, T. (18)
Fujiwara, M. C. (18)
Hangst, J. S. (18)
Hayden, M. E. (18)
Jonsell, Svante (18)
Kurchaninov, L. (18)
Madsen, N. (18)
McKenna, J. T. K. (18)
Menary, S. (18)
Olchanski, K. (18)
Olin, A. (18)
Pusa, P. (18)
Robicheaux, F. (18)
Sarid, E. (18)
Silveira, D. M. (18)
So, C. (18)
Capra, A. (17)
Gill, D. R. (17)
Hardy, W. N. (17)
Isaac, C. A. (17)
Thompson, R. I. (17)
Wurtele, J. S. (17)
Gutierrez, A. (12)
Rasmussen, C. O. (12)
Butler, E. (12)
Neely, D (11)
Wahlström, Claes-Gör ... (11)
Evetts, N. (11)
Sacramento, R. L. (11)
Tharp, T. D. (11)
Evans, A. (10)
Nolan, P. (10)
Maxwell, D. (10)
Momose, T. (10)
Sameed, M. (10)
Baquero-Ruiz, M. (9)
Carruth, C. (9)
Jones, S. A. (9)
Munich, J. J. (9)
Baker, C. J. (9)
Ahmadi, M (8)
Zepf, M. (8)
Collister, R. (8)
Johnson, M. A. (8)
visa färre...
Lärosäte
Stockholms universitet (19)
Lunds universitet (16)
Karolinska Institutet (10)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (4)
Göteborgs universitet (3)
visa fler...
Umeå universitet (3)
Luleå tekniska universitet (2)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
Linköpings universitet (1)
visa färre...
Språk
Engelska (59)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (43)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy