SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pennells L.) "

Sökning: WFRF:(Pennells L.)

  • Resultat 11-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Di Angelantonio, E., et al. (författare)
  • Lipid-related markers and cardiovascular disease prediction
  • 2012
  • Ingår i: JAMA : the journal of the American Medical Association. - : American Medical Association (AMA). - 1538-3598 .- 0098-7484. ; 307:23, s. 2499-506
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: The value of assessing various emerging lipid-related markers for prediction of first cardiovascular events is debated. OBJECTIVE: To determine whether adding information on apolipoprotein B and apolipoprotein A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 to total cholesterol and high-density lipoprotein cholesterol (HDL-C) improves cardiovascular disease (CVD) risk prediction. DESIGN, SETTING, AND PARTICIPANTS: Individual records were available for 165,544 participants without baseline CVD in 37 prospective cohorts (calendar years of recruitment: 1968-2007) with up to 15,126 incident fatal or nonfatal CVD outcomes (10,132 CHD and 4994 stroke outcomes) during a median follow-up of 10.4 years (interquartile range, 7.6-14 years). MAIN OUTCOME MEASURES: Discrimination of CVD outcomes and reclassification of participants across predicted 10-year risk categories of low (<10%), intermediate (10%-<20%), and high (>/=20%) risk. RESULTS: The addition of information on various lipid-related markers to total cholesterol, HDL-C, and other conventional risk factors yielded improvement in the model's discrimination: C-index change, 0.0006 (95% CI, 0.0002-0.0009) for the combination of apolipoprotein B and A-I; 0.0016 (95% CI, 0.0009-0.0023) for lipoprotein(a); and 0.0018 (95% CI, 0.0010-0.0026) for lipoprotein-associated phospholipase A2 mass. Net reclassification improvements were less than 1% with the addition of each of these markers to risk scores containing conventional risk factors. We estimated that for 100,000 adults aged 40 years or older, 15,436 would be initially classified at intermediate risk using conventional risk factors alone. Additional testing with a combination of apolipoprotein B and A-I would reclassify 1.1%; lipoprotein(a), 4.1%; and lipoprotein-associated phospholipase A2 mass, 2.7% of people to a 20% or higher predicted CVD risk category and, therefore, in need of statin treatment under Adult Treatment Panel III guidelines. CONCLUSION: In a study of individuals without known CVD, the addition of information on the combination of apolipoprotein B and A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 mass to risk scores containing total cholesterol and HDL-C led to slight improvement in CVD prediction.
  •  
12.
  • Gaziano, Liam, et al. (författare)
  • Mild-to-moderate kidney dysfunction and cardiovascular disease : Observational and mendelian randomization analyses
  • 2022
  • Ingår i: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 146:20, s. 1507-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke.METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank.RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eGFR values <60 or >105 mL·min-1·1.73 m-2, compared with those with eGFR between 60 and 105 mL·min-1·1.73 m-2. Mendelian randomization analyses for CHD showed an association among participants with eGFR <60 mL·min-1·1.73 m-2, with a 14% (95% CI, 3%-27%) higher CHD risk per 5 mL·min-1·1.73 m-2 lower genetically predicted eGFR, but not for those with eGFR >105 mL·min-1·1.73 m-2. Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD.CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function.
  •  
13.
  • Hageman, Steven H. J., et al. (författare)
  • Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions
  • 2024
  • Ingår i: EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY. - 2047-4873 .- 2047-4881.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.Methods and results The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.Conclusion By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines. The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person's lifetime, and highlights how where you live in Europe can affect this risk. Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
  •  
14.
  • Ostergaard, H. B., et al. (författare)
  • Estimating individual lifetime risk of incident cardiovascular events in adults with Type 2 diabetes: an update and geographical calibration of the DIAbetes Lifetime perspective model (DIAL2)
  • 2023
  • Ingår i: European Journal of Preventive Cardiology. - : Oxford University Press (OUP). - 2047-4873 .- 2047-4881. ; 30:1, s. 61-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The 2021 European Society of Cardiology cardiovascular disease (CVD) prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding intensified preventive treatment options in adults with Type 2 diabetes, e.g. the DIAbetes Lifetime perspective model (DIAL model). The aim of this study was to update the DIAL model using contemporary and representative registry data (DIAL2) and to systematically calibrate the model for use in other European countries. Methods and results The DIAL2 model was derived in 467 856 people with Type 2 diabetes without a history of CVD from the Swedish National Diabetes Register, with a median follow-up of 7.3 years (interquartile range: 4.0-10.6 years) and comprising 63 824 CVD (including fatal CVD, non-fatal stroke and non-fatal myocardial infarction) events and 66 048 non-CVD mortality events. The model was systematically recalibrated to Europe's low- and moderate-risk regions using contemporary incidence data and mean risk factor distributions. The recalibrated DIAL2 model was externally validated in 218 267 individuals with Type 2 diabetes from the Scottish Care Information-Diabetes (SCID) and Clinical Practice Research Datalink (CPRD). In these individuals, 43 074 CVD events and 27 115 non-CVD fatal events were observed. The DIAL2 model discriminated well, with C-indices of 0.732 [95% confidence interval (CI) 0.726-0.739] in CPRD and 0.700 (95% CI 0.691-0.709) in SCID. Conclusion The recalibrated DIAL2 model provides a useful tool for the prediction of CVD-free life expectancy and lifetime CVD risk for people with Type 2 diabetes without previous CVD in the European low- and moderate-risk regions. These long-term individualized measures of CVD risk are well suited for shared decision-making in clinical practice as recommended by the 2021 CVD ESC prevention guidelines.
  •  
15.
  • Paige, Ellie, et al. (författare)
  • Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction : An Individual-Participant-Data Meta-Analysis
  • 2017
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 186:8, s. 899-907
  • Forskningsöversikt (refereegranskat)abstract
    • The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy