SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Penninx Brenda) "

Sökning: WFRF:(Penninx Brenda)

  • Resultat 61-70 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
62.
  • Tragante, Vinicius, et al. (författare)
  • Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:3, s. 349-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification.
  •  
63.
  • van de Vegte, Yordi, et al. (författare)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
64.
  • van der Harst, Pim, et al. (författare)
  • Seventy-five genetic loci influencing the human red blood cell
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 492:7429, s. 369-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.
  •  
65.
  • Vimaleswaran, Karani S, et al. (författare)
  • Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study.
  • 2014
  • Ingår i: The lancet. Diabetes & endocrinology. - 2213-8595 .- 2213-8587. ; 2:9, s. 719-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings In phenotypic analyses (up to n=49363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, −0·12 mm Hg, 95% CI −0·20 to −0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97–0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, −0·02 mm Hg, −0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of −0·10 mm Hg in systolic blood pressure (−0·21 to −0·0001; p=0·0498) and a change of −0·08 mm Hg in diastolic blood pressure (−0·15 to −0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96–0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of −0·29 mm Hg in diastolic blood pressure (−0·52 to −0·07; p=0·01), a change of −0·37 mm Hg in systolic blood pressure (−0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87–0·97; p=0·002). Interpretation Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
  •  
66.
  • Wain, Louise V., et al. (författare)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
67.
  • Walhovd, Kristine B., et al. (författare)
  • Brain aging differs with cognitive ability regardless of education
  • 2022
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20–88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.
  •  
68.
  • Walhovd, Kristine B., et al. (författare)
  • Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 32:4, s. 839-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national origin. European and US cohorts covering the lifespan were studied (4-97 years, N = 500 000; 54 000 w/brain imaging). There was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts. Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across cohorts. Differences in neuroanatomical volumes partially explained SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. The relatively stronger SES-ICV associations rather are compatible with SES-brain volume relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.
  •  
69.
  • Wikgren, Mikael, 1981- (författare)
  • Telomeres and the brain : an investigation into the relationships of leukocyte telomere length with functional and structural attributes of the brain
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Telomeres are the outermost parts of linear chromosomes. They consist of tandemly repeated non-coding short nucleotide sequences (TTAGGG in all vertebrates), in humans spanning over the last 2 to 15 kilobase pairs of the chromosome. Due to the end-replication problem, telomeres shorten with each cellular division. A critically short telomere will trigger the cell to enter a state of cellular senescence or to apoptose. The rate of telomere shortening can be accelerated by factors such as oxidative stress and inflammation. Taken together, this contributed to making telomere length a candidate biomarker of health and aging. Studies have shown that leukocyte telomere length progressively shortens with age, and that it independent of age is associated with age-related morbidity, lifestyle factors, and mortality. This thesis was aimed at exploring the relationships of leukocyte telomere length with various functional and structural attributes of the brain. In Paper I, telomere length was shown to be longer among non-demented carriers of the apolipoprotein E (APOE) ε4 allele, a well-established risk factor for Alzheimer’s disease. However, the rate of telomere shortening was greater among the ε4 carriers, possibly due to the higher levels of oxidative stress and inflammation associated with this allele. Furthermore, performance on episodic memory tests was inversely related to telomere length among ε4 carriers. The results may contribute to a better understanding of the pathophysiology related to the APOE ε4 allele. The volume of the hippocampus, a structure in the brain critical for episodic memory function, was in Paper II found to be inversely related to telomere length among non-demented APOE ε3/ε3 carriers. No correlation between hippocampal volume and telomere length was discernible among ε4 carriers, but they fit the pattern exhibited by the ε3/ε3 carriers as they tended to have smaller hippocampi and longer telomere length compared with the ε3/ε3 carriers. The results are possibly explained by a low proliferative activity among subjects with smaller hippocampi, which might also explain the inverse association between telomere length and episodic memory performance in Paper I. In Paper III, we describe results corroborating earlier findings of shorter telomere length among individuals suffering from depression. Moreover, we found that the shorter telomere length among the patients to a large extent could be linked to a hypocortisolemic state; a state which has been associated with chronic stress. The findings corroborate the link between telomere length and stress, and underline the role of stress in depressive illness. Two prominent manifestations of the aging brain are atrophy and white matter hyperintensities. In Paper IV, we report that white matter hyperintensities and cerebral subcortical atrophy were associated with shorter telomere length in aged non-demented individuals. Cortical atrophy was not associated with telomere length. Inflammation may be the underlying cause of the associations, as it is linked to telomere attrition, subcortical atrophy, and white matter hyperintensities. Taken together, these results show that leukocyte telomere length has the potential of being used as a biomarker for structural and functional attributes of the brain. Furthermore, the findings can provide new insights into mechanisms of disease and aging of the brain
  •  
70.
  • Wuttke, Matthias, et al. (författare)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 72
Typ av publikation
tidskriftsartikel (67)
forskningsöversikt (3)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (69)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
van Duijn, Cornelia ... (37)
Uitterlinden, André ... (35)
Penninx, Brenda W J ... (35)
Gieger, Christian (34)
Boomsma, Dorret I. (31)
Hofman, Albert (31)
visa fler...
Hottenga, Jouke-Jan (29)
Teumer, Alexander (28)
Metspalu, Andres (27)
Wareham, Nicholas J. (26)
van der Harst, Pim (26)
Esko, Tõnu (26)
Samani, Nilesh J. (25)
Loos, Ruth J F (25)
Hayward, Caroline (25)
Vollenweider, Peter (25)
Salomaa, Veikko (24)
Perola, Markus (24)
Mangino, Massimo (24)
Willemsen, Gonneke (24)
Gudnason, Vilmundur (24)
Rudan, Igor (23)
Boehnke, Michael (23)
Stefansson, Kari (23)
Martin, Nicholas G. (23)
Luan, Jian'an (23)
Nolte, Ilja M. (23)
Campbell, Harry (22)
Chasman, Daniel I. (22)
Jarvelin, Marjo-Riit ... (22)
Pramstaller, Peter P ... (22)
Wilson, James F. (22)
Harris, Tamara B (22)
Psaty, Bruce M (22)
Boerwinkle, Eric (22)
McCarthy, Mark I (21)
Amin, Najaf (21)
Ripatti, Samuli (21)
Vitart, Veronique (21)
Polasek, Ozren (21)
Ridker, Paul M. (20)
Kaprio, Jaakko (20)
Munroe, Patricia B. (20)
Montgomery, Grant W. (20)
Prokopenko, Inga (20)
Feitosa, Mary F. (20)
Soranzo, Nicole (19)
de Geus, Eco J. C. (19)
Spector, Tim D. (19)
Hicks, Andrew A. (19)
visa färre...
Lärosäte
Uppsala universitet (39)
Lunds universitet (38)
Karolinska Institutet (38)
Umeå universitet (23)
Göteborgs universitet (21)
Stockholms universitet (5)
visa fler...
Högskolan Dalarna (3)
Luleå tekniska universitet (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (72)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (63)
Naturvetenskap (7)
Samhällsvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy