SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Perley Daniel A.) "

Search: WFRF:(Perley Daniel A.)

  • Result 11-20 of 59
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Frederick, Sara, et al. (author)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
12.
  • Fremling, Christoffer, et al. (author)
  • SNIascore : Deep-learning Classification of Low-resolution Supernova Spectra
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 917:1
  • Journal article (peer-reviewed)abstract
    • We present SNIascore, a deep-learning-based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R similar to 100) data. The goal of SNIascore is the fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of z = 0.01 to z = 0.12). For the magnitude-limited ZTF BTS survey (approximate to 70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by approximate to 60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real time to the public immediately following a finished observation during the night.
  •  
13.
  • Ho, Anna Y. Q., et al. (author)
  • SN 2020bvc : A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby (z = 0.0252; d.=.114Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity (L-radio approximate to 10(37) erg s(-1)) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v greater than or similar to 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L-X approximate to 10(41) erg s(-1)) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6x night(-1)) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass M-e < 10(-2) M-circle dot at radius R-e > 10(12) cm) and the second peak from the radioactive decay of 56Ni. SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z less than or similar to 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts approximate to 1 day.and reaches a peak luminosity M approximate to -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
  •  
14.
  • Stein, Robert, et al. (author)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Journal article (peer-reviewed)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
15.
  • Yao, Yuhan, et al. (author)
  • ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:2
  • Journal article (peer-reviewed)abstract
    • Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z = 0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN 2018crl), one Ia-CSM SN ZTF18aaykjei (SN 2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN 2018eul), ZTF18abdpvnd (SN 2018dvf), ZTF18aawpcel (SN 2018cir), and ZTF18abddmrf (SN 2018dsx).
  •  
16.
  • Andreoni, Igor, et al. (author)
  • Fast-transient Searches in Real Time with ZTFReST : Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 918:2
  • Journal article (peer-reviewed)abstract
    • The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc(-3) yr(-1) (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory.
  •  
17.
  • Coughlin, Michael W., et al. (author)
  • 2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:998
  • Journal article (peer-reviewed)abstract
    • There is significant interest in the models for production of short gamma-ray bursts (GRBs). Until now, the number of known short GRBs with multi-wavelength afterglows has been small. While the Fermi GRB Monitor detects many GRBs relative to the Neil Gehrels Swift Observatory, the large localization regions makes the search for counterparts difficult. With the Zwicky Transient Facility (ZTF) recently achieving first light, it is now fruitful to use its combination of depth (m(AB) similar to 20.6), field of view (approximate to 47 square degrees), and survey cadence (every similar to 3 days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B, which was recently announced by the Fermi GRB Monitor as a short GRB. ZTF imaged approximate to 2900 square degrees of the localization region, resulting in the coverage of 61.6% of the enclosed probability over two nights to a depth of m(AB) similar to 20.5. We characterized 14 previously unidentified transients, and none were found to be consistent with a short GRB counterpart. This search with the ZTF shows it is an efficient camera for searching for coarsely localized short GRB and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption to its nominal cadence.
  •  
18.
  • Graham, Melissa L., et al. (author)
  • Supernova siblings and their parent galaxies in the Zwicky Transient Facility Bright Transient Survey
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:1, s. 241-254
  • Journal article (peer-reviewed)abstract
    • Supernova (SN) siblings - two or more SNe in the same parent galaxy - are useful tools for exploring progenitor stellar populations as well as properties of the host galaxies such as distance, star-formation rate, dust extinction, and metallicity. Since the average SN rate for a Milky Way-type galaxy is just one per century, a large imaging survey is required to discover an appreciable sample of SN siblings. From the wide-field Zwicky Transient Facility (ZTF) Bright Transient Survey (which aims for spectroscopic completeness for all transients which peak brighter than r < 18.5 mag) we present 10 SN siblings in five parent galaxies. For each of these families, we analyse the SN's location within the host and its underlying stellar population, finding agreement with expectations that SNe from more massive progenitors are found nearer to their host core and in regions of more active star formation. We also present an analysis of the relative rates of core collapse and thermonuclear SN siblings, finding a significantly lower ratio than past SN sibling samples due to the unbiased nature of the ZTF.
  •  
19.
  • Ho, Anna Y. Q., et al. (author)
  • Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova : Pre-explosion Emission and a Rapidly Rising Luminous Transient
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Journal article (peer-reviewed)abstract
    • We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 +/- 0.1 mag hr(-1)) and luminous (M-g,M- peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L-bol greater than or similar to 3 x 10(44) erg s(-1)), the short rise time (t(rise) = 3 days in g band), and the blue colors at peak (g-r similar to -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T-eff greater than or similar to 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M-g similar to M-r approximate to -14 mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E-gamma,E- iso < 4.9 x 10(48) erg, a limit on X-ray emission L-X < 10(40) erg s(-1), and a limit on radio emission nu L-v less than or similar to 10(37) erg s(-1). Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M-circle dot) at large radii (3 x 10(14) cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
  •  
20.
  • Irani, I., et al. (author)
  • Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 927:1
  • Journal article (peer-reviewed)abstract
    • We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g-band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An Ha-emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular Ha profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3%(+0.3)(-0.1) of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view