SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perola Markus) "

Sökning: WFRF:(Perola Markus)

  • Resultat 31-40 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Horikoshi, Momoko, et al. (författare)
  • Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
  •  
32.
  • Huffman, Jennifer E., et al. (författare)
  • Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P-inter= 2.6 x 10(-8)). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10(-8)), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10(-8)), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10(-4)). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
  •  
33.
  • Hägg, Sara, et al. (författare)
  • Adiposity as a cause of cardiovascular disease : a Mendelian randomization study
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 578-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (beta = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
  •  
34.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
35.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
36.
  • Karvanen, Juha, et al. (författare)
  • The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts.
  • 2009
  • Ingår i: Genetic Epidemiology. - : Wiley. - 0741-0395 .- 1098-2272. ; 33:3, s. 237-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, genome wide association studies (GWAS) have identified a number of single nucleotide polymorphisms (SNPs) as being associated with coronary heart disease (CHD). We estimated the effect of these SNPs on incident CHD, stroke and total mortality in the prospective cohorts of the MORGAM Project. We studied cohorts from Finland, Sweden, France and Northern Ireland (total N=33,282, including 1,436 incident CHD events and 571 incident stroke events). The lead SNPs at seven loci identified thus far and additional SNPs (in total 42) were genotyped using a case-cohort design. We estimated the effect of the SNPs on disease history at baseline, disease events during follow-up and classic risk factors. Multiple testing was taken into account using false discovery rate (FDR) analysis. SNP rs1333049 on chromosome 9p21.3 was associated with both CHD and stroke (HR=1.20, 95% CI 1.08-1.34 for incident CHD events and 1.15, 0.99-1.34 for incident stroke). SNP rs11670734 (19q12) was associated with total mortality and stroke. SNP rs2146807 (10q11.21) showed some association with the fatality of acute coronary event. SNP rs2943634 (2q36.3) was associated with high density lipoprotein (HDL) cholesterol and SNPs rs599839, rs4970834 (1p13.3) and rs17228212 (15q22.23) were associated with non-HDL cholesterol. SNPs rs2943634 (2q36.3) and rs12525353 (6q25.1) were associated with blood pressure. These findings underline the need for replication studies in prospective settings and confirm the candidacy of several SNPs that may play a role in the etiology of cardiovascular disease.
  •  
37.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
38.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
39.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
  •  
40.
  • Koivukoski, Liisa, et al. (författare)
  • Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3.
  • 2004
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 13:19, s. 2325-2332
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual genome-wide scans of blood pressure (BP) and hypertension (HT) have shown inconsistent results. The aim of this study was to investigate whether there was any consistent evidence of linkage across multiple studies with similar ethnicity. We applied the genome-search meta-analysis method (GSMA) to nine published genome-wide scans of BP (n=5) and HT (n=4) from Caucasian populations. For each study, the genome was divided into 120 bins and ranked according to the maximum evidence of linkage within each bin. The ranks were summed and averaged across studies and significance levels were estimated, on the basis of a distribution function of summed ranks or permutation tests without (P-U) or with (P-W) a study sample size weighting factor. Chromosome 3p14.1-q12.3 showed consistent evidence of linkage to HT (P-U=0.0001 and P-W=0.0001), diastolic BP (DBP) (P-U=0.007 and P-W=0.02), HT and DBP pooled (P-U=0.00002 and P-W=0.0001) and HT and systolic BP (SBP) pooled (P-U=0.0003 and P-W=0.0005). Chromosome 2p12-q22.1 showed evidence of linkage to HT (P-U=0.003 and P-W=0.009), DBP (P-U=0.05 and P-W=NS), HT and DBP pooled (P-U=0.001 and P-W=0.004) and HT and SBP pooled (P-U=0.001 and P-W=0.005). The summed ranks of the HT analysis correlated significantly with those of the DBP (r=0.20, P=0.03) but not with those of the SBP. Both loci showed clustering of significant bins in the analysis of HT and DBP. We conclude that modest or non-significant linkage on chromosomes 3p14.1-q12.3 and 2p12-q22.1 in each individual study translates into genome-wide significant or highly suggestive linkages to HT and DBP in our GSMA analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 91
Typ av publikation
tidskriftsartikel (89)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (88)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Perola, Markus (86)
Salomaa, Veikko (58)
Metspalu, Andres (38)
van Duijn, Cornelia ... (36)
Gieger, Christian (36)
Esko, Tõnu (36)
visa fler...
Lind, Lars (35)
McCarthy, Mark I (35)
Wareham, Nicholas J. (34)
Samani, Nilesh J. (34)
Ripatti, Samuli (33)
Loos, Ruth J F (33)
Uitterlinden, André ... (33)
Hayward, Caroline (33)
Rudan, Igor (32)
Deloukas, Panos (32)
Luan, Jian'an (32)
Boehnke, Michael (31)
Hofman, Albert (31)
Mangino, Massimo (29)
Kaprio, Jaakko (29)
Jula, Antti (28)
Laakso, Markku (28)
Stefansson, Kari (28)
Groop, Leif (27)
Campbell, Harry (27)
Langenberg, Claudia (27)
Ingelsson, Erik (27)
Thorleifsson, Gudmar (27)
Wilson, James F. (27)
Gudnason, Vilmundur (27)
Vollenweider, Peter (27)
Mohlke, Karen L (26)
Harris, Tamara B (26)
Chasman, Daniel I. (25)
Tuomilehto, Jaakko (25)
Ridker, Paul M. (24)
Thorsteinsdottir, Un ... (24)
Willemsen, Gonneke (24)
Boomsma, Dorret I. (24)
Munroe, Patricia B. (24)
Polasek, Ozren (24)
Kanoni, Stavroula (24)
Kuusisto, Johanna (23)
Spector, Tim D. (23)
Hicks, Andrew A. (23)
Pramstaller, Peter P ... (23)
Rivadeneira, Fernand ... (23)
Zhao, Jing Hua (23)
Boerwinkle, Eric (23)
visa färre...
Lärosäte
Uppsala universitet (63)
Lunds universitet (56)
Karolinska Institutet (47)
Umeå universitet (27)
Göteborgs universitet (17)
Högskolan Dalarna (6)
visa fler...
Stockholms universitet (2)
Handelshögskolan i Stockholm (2)
Mittuniversitetet (2)
Högskolan i Skövde (2)
Chalmers tekniska högskola (2)
Luleå tekniska universitet (1)
Linköpings universitet (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (90)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (74)
Naturvetenskap (11)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy