SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prentice IC) "

Sökning: WFRF:(Prentice IC)

  • Resultat 11-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Sitch, S, et al. (författare)
  • Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model
  • 2003
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 9:2, s. 161-185
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire-response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5degrees x 0.5degrees grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter-annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2 . Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.
  •  
12.
  •  
13.
  •  
14.
  • Zaehle, S, et al. (författare)
  • Projected changes in terrestrial carbon storage in Europe under climate and land use change, 1990-2100
  • 2007
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 10, s. 380-401
  • Forskningsöversikt (refereegranskat)abstract
    • Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES storylines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES storyline. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy