SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Psaty Bruce) "

Search: WFRF:(Psaty Bruce)

  • Result 61-70 of 113
Sort/group result
   
EnumerationReferenceCoverFind
61.
  • Liu, Ching-Ti, et al. (author)
  • Assessment of gene-by-sex interaction effect on bone mineral density
  • 2012
  • In: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 27:10, s. 2051-2064
  • Journal article (peer-reviewed)abstract
    • Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p?
  •  
62.
  • Loth, Daan W, et al. (author)
  • Genome-wide association analysis identifies six new loci associated with forced vital capacity
  • 2014
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46, s. 669-677
  • Journal article (peer-reviewed)abstract
    • Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
  •  
63.
  • Lubitz, Steven A, et al. (author)
  • Genetic Risk Prediction of Atrial Fibrillation
  • 2017
  • In: Circulation. - 0009-7322. ; 135:14, s. 1311-1320
  • Journal article (peer-reviewed)abstract
    • BACKGROUND—: Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. METHODS—: To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10 to <1x10 in a prior independent genetic association study. RESULTS—: Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). CONCLUSIONS—: Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms.
  •  
64.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
65.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
66.
  • Marklund, Matti, et al. (author)
  • Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality : An Individual-Level Pooled Analysis of 30 Cohort Studies
  • 2019
  • In: Circulation. - : American Heart Association. - 0009-7322 .- 1524-4539. ; 139:21, s. 2422-2436
  • Journal article (peer-reviewed)abstract
    • Background:Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies.Methods:We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available).Results:In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15198 incident cardiovascular events occurred among 68659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88-0.99), 0.78 (0.70-0.85), and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88-1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships.Conclusions:In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention.
  •  
67.
  • McKeown, Nicola M., et al. (author)
  • Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway : a meta-analysis
  • 2018
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:2, s. 317-330
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fructose-induced metabolic disease. We hypothesise that common variants in 11 genes involved in fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to exacerbate positive associations between higher SSB intake and glycaemic traits. Methods: Data from 11 cohorts (six discovery and five replication) in the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided association and interaction results from 34,748 adults of European descent. SSB intake (soft drinks, fruit punches, lemonades or other fruit drinks) was derived from food-frequency questionnaires and food diaries. In fixed-effects meta-analyses, we quantified: (1) the associations between SSBs and glycaemic traits (fasting glucose and fasting insulin); and (2) the interactions between SSBs and 18 independent SNPs related to the ChREBP-FGF21 pathway. Results: In our combined meta-analyses of discovery and replication cohorts, after adjustment for age, sex, energy intake, BMI and other dietary covariates, each additional serving of SSB intake was associated with higher fasting glucose (β ± SE 0.014 ± 0.004 [mmol/l], p = 1.5 × 10−3) and higher fasting insulin (0.030 ± 0.005 [loge pmol/l], p = 2.0 × 10−10). No significant interactions on glycaemic traits were observed between SSB intake and selected SNPs. While a suggestive interaction was observed in the discovery cohorts with a SNP (rs1542423) in the β-Klotho (KLB) locus on fasting insulin (0.030 ± 0.011 loge pmol/l, uncorrected p = 0.006), results in the replication cohorts and combined meta-analyses were non-significant. Conclusions/interpretation: In this large meta-analysis, we observed that SSB intake was associated with higher fasting glucose and insulin. Although a suggestive interaction with a genetic variant in the ChREBP-FGF21 pathway was observed in the discovery cohorts, this observation was not confirmed in the replication analysis. Trial registration: Trials related to this study were registered at clinicaltrials.govas NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis) and NCT00005152 (Nurses’ Health Study).
  •  
68.
  • Merino, Jordi, et al. (author)
  • Quality of dietary fat and genetic risk of type 2 diabetes : individual participant data meta-analysis
  • 2019
  • In: BMJ. British Medical Journal. - : BMJ Publishing Group Ltd. - 0959-8146 .- 0959-535X. ; 366
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.DESIGN Individual participant data meta-analysis.DATA SOURCES Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.REVIEW METHODS Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.RESULTS Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I-2 = 7.1%, tau(2) = 0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I-2 = 18.0%, tau(2) = 0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I-2 = 58.8%, tau(2) = 0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I-2 = 25.9%, tau(2) = 0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.CONCLUSIONS These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
  •  
69.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
70.
  • O'Seaghdha, Conall M., et al. (author)
  • Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations
  • 2013
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:9, s. e1003796-
  • Journal article (peer-reviewed)abstract
    • Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in <= 21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 61-70 of 113
Type of publication
journal article (112)
research review (1)
Type of content
peer-reviewed (112)
other academic/artistic (1)
Author/Editor
Psaty, Bruce M (107)
Rotter, Jerome I. (74)
Gudnason, Vilmundur (59)
Hofman, Albert (58)
Uitterlinden, André ... (57)
Harris, Tamara B (52)
show more...
Boerwinkle, Eric (52)
Loos, Ruth J F (44)
Hayward, Caroline (43)
van Duijn, Cornelia ... (42)
Liu, Yongmei (41)
Wareham, Nicholas J. (40)
Chasman, Daniel I. (39)
Launer, Lenore J (39)
Ridker, Paul M. (36)
Salomaa, Veikko (33)
Lind, Lars (33)
Rudan, Igor (33)
Fornage, Myriam (33)
Franco, Oscar H. (33)
van der Harst, Pim (32)
Rivadeneira, Fernand ... (31)
North, Kari E. (29)
Boehnke, Michael (29)
Polasek, Ozren (29)
Langenberg, Claudia (28)
Gieger, Christian (28)
Wilson, James F. (28)
Cupples, L. Adrienne (28)
Campbell, Harry (26)
Amin, Najaf (26)
Stefansson, Kari (26)
Luan, Jian'an (26)
Zhao, Jing Hua (26)
Rich, Stephen S (26)
Laakso, Markku (25)
Meitinger, Thomas (25)
Mangino, Massimo (24)
Morrison, Alanna C (24)
Melander, Olle (23)
Mohlke, Karen L (23)
Thorleifsson, Gudmar (23)
Thorsteinsdottir, Un ... (23)
Peters, Annette (23)
Munroe, Patricia B. (23)
Deary, Ian J (23)
Eiriksdottir, Gudny (23)
Siscovick, David S. (23)
Esko, Tõnu (23)
Tanaka, Toshiko (23)
show less...
University
Uppsala University (65)
Lund University (62)
Karolinska Institutet (38)
Umeå University (30)
University of Gothenburg (24)
Stockholm University (6)
show more...
Högskolan Dalarna (4)
Luleå University of Technology (2)
Stockholm School of Economics (1)
show less...
Language
English (113)
Research subject (UKÄ/SCB)
Medical and Health Sciences (101)
Natural sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view