SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raitakari Olli) "

Sökning: WFRF:(Raitakari Olli)

  • Resultat 41-50 av 107
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
42.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
43.
  • Kemp, John P, et al. (författare)
  • Does bone resorption stimulate periosteal expansion? A cross sectional analysis of β-C-telopeptides of type I collagen (CTX), genetic markers of the RANKL pathway, and periosteal circumference as measured by pQCT.
  • 2014
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 1523-4681. ; 29:4, s. 1015-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesised that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodelling such as cortical bone mineral density (BMDC ). CTX and mid-tibial pQCT scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass and height. CTX was positively related to PC [β= 0.19 (0.13, 0.24)] (coefficient=SD change per SD increase in CTX, 95% CI)], but inversely associated with BMDC [β= -0.46 (-0.52,-0.40)] and cortical thickness [β= -0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) [β= 0.09 (0.03, 0.14)]. To examine the causal nature of this relationship, we then analysed whether SNPs within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding RANK, RANKL and OPG were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (P<0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938) and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (P<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.
  •  
44.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
45.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) =0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio =1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio =1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
46.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
  •  
47.
  • Laaksonen, Marko, 1975-, et al. (författare)
  • Left-ventricular hypertrophy associates to impaired maximal myocardial perfusion in endurance-trained men
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • Long-term endurance training induces morphological adaptations in heart, such as left-ventricular (LV) hypertrophy caused by wall thickening and cavity enlargement. Interestingly, these anatomical changes in the heart are strikingly similar to certain pathophysiological changes (Pellicia 2000). Previous studies have shown that the perfusion response in myocardium during dipyridamole- or adenosine infusion is decreased in several pathophysiological states with LV hypertrophy (e.g. Stolen et al. 2004). However, studies in endurance athletes with LV hypertrophy have shown contradictory results on myocardial perfusion response ranging from reduced to increased myocardial perfusion during dipyridamole- or adenosine-induced vasodilation compared to untrained men (Kjaer et al. 2005; Kalliokoski et al. 2002). The degree of hypertrophy could explain the discrepant findings in studies in athletes, but it has not been thoroughly investigated. Thus, we examined totally 31 endurance athletes (ET) and 25 untrained (UT) men in order to study the association between myocardial functional and anatomical parameters measured with echocardiography, and myocardial perfusion (at rest and during maximal vasodilation induced by iv adenosine) measured with Positron Emission Tomography. Both VO2max (60+-5 vs 42+-8 ml/kg/min, p<0.001) and LVmass index (169+-27 vs 102+-15 g/m2, p<0.001) were markedly higher in ET. Resting myocardial perfusion was similar between the groups (ET 0.7+-0.2 vs UT 0.8+-0.2 ml/g/min, p=0.22) whereas adenosine-stimulated perfusion was lower in ET (2.9+-1.0 vs 3.7+-1.0 ml/g/min, p<0.01). VO2max correlated inversely with adenosine-stimulated perfusion in ET (r=-0.39, p=0.03) and with resting perfusion in UT (-0.49, p=0.01). Forward LV work correlated linearly with resting perfusion in both groups (ET r=0.54, p<0.01; UT r=0.50, p=0.01). ET group was further divided into three subgroups according to LVmass index (ET1: LVmass index <150g/m2, n=9; ET2 LVmass index 150-180 g/m2, n=12; ET3 LVmass index >180 gm2, n=10). Adenosine-induced myocardial perfusion decreased gradually when LVmass increased (UT 3.7+-1.+0 vs ET1 3.3+-0.9 vs ET2 2.7+-1.4 vs ET3 2.6+-0.5 mL g-1 min-1, p=0.008). LVmass index was also inversely related to adenosine-induced perfusion in entire study population (r=-0.46, p<0.01). Therefore, these results suggest that endurance training-induced severe cardiac hypertrophy impairs myocardial perfusion capacity. Kalliokoski K et al. (2002) Med Sci Sports Exerc 34:948-53 Kjaer A et al. (2005) Am J Cardiol 96:1692-98 Pellicia A (2000) Curr Cardiol Rep 2(2):166-71 Stolen KQ et al (2004) 10(2):132-40
  •  
48.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
49.
  • Laurila, Pirkka-Pekka, et al. (författare)
  • Genomic, transcriptomic, and lipidomic profiling highlights the role of inflammation in individuals with low high-density lipoprotein cholesterol
  • 2013
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 33:4, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Low high-density lipoprotein cholesterol (HDL-C) is associated with cardiometabolic pathologies. In this study, we investigate the biological pathways and individual genes behind low HDL-C by integrating results from 3 high-throughput data sources: adipose tissue transcriptomics, HDL lipidomics, and dense marker genotypes from Finnish individuals with low or high HDL-C (n=450).APPROACH AND RESULTS: In the pathway analysis of genetic data, we demonstrate that genetic variants within inflammatory pathways were enriched among low HDL-C associated single-nucleotide polymorphisms, and the expression of these pathways upregulated in the adipose tissue of low HDL-C subjects. The lipidomic analysis highlighted the change in HDL particle quality toward putatively more inflammatory and less vasoprotective state in subjects with low HDL-C, as evidenced by their decreased antioxidative plasmalogen contents. We show that the focal point of these inflammatory pathways seems to be the HLA region with its low HDL-associated alleles also associating with more abundant local transcript levels in adipose tissue, increased plasma vascular cell adhesion molecule 1 (VCAM1) levels, and decreased HDL particle plasmalogen contents, markers of adipose tissue inflammation, vascular inflammation, and HDL antioxidative potential, respectively. In a population-based look-up of the inflammatory pathway single-nucleotide polymorphisms in a large Finnish cohorts (n=11 211), no association of the HLA region was detected for HDL-C as quantitative trait, but with extreme HDL-C phenotypes, implying the presence of low or high HDL genes in addition to the population-genomewide association studies-identified HDL genes.CONCLUSIONS: Our study highlights the role of inflammation with a genetic component in subjects with low HDL-C and identifies novel cis-expression quantitative trait loci (cis-eQTL) variants in HLA region to be associated with low HDL-C.
  •  
50.
  • Lim, Elaine T, et al. (författare)
  • Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10-8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10-117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10-4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 107
Typ av publikation
tidskriftsartikel (104)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (106)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Raitakari, Olli T (59)
Uitterlinden, André ... (56)
Lehtimäki, Terho (51)
Hofman, Albert (50)
Raitakari, Olli (46)
van Duijn, Cornelia ... (43)
visa fler...
Harris, Tamara B (40)
Loos, Ruth J F (39)
Gudnason, Vilmundur (39)
Salomaa, Veikko (38)
Rivadeneira, Fernand ... (38)
Hayward, Caroline (38)
Esko, Tõnu (38)
Kähönen, Mika (37)
Metspalu, Andres (37)
Lehtimaki, Terho (36)
Gieger, Christian (35)
Teumer, Alexander (34)
McCarthy, Mark I (33)
Chasman, Daniel I. (33)
Wilson, James F. (33)
Liu, Yongmei (33)
Polasek, Ozren (33)
Feitosa, Mary F. (33)
Rudan, Igor (32)
Wareham, Nicholas J. (32)
Morris, Andrew P. (32)
Rotter, Jerome I. (31)
Franco, Oscar H. (31)
Perola, Markus (30)
Lind, Lars (30)
Ridker, Paul M. (30)
Psaty, Bruce M (30)
Vollenweider, Peter (30)
Eriksson, Johan G. (29)
Viikari, Jorma (28)
Hansen, Torben (28)
Mohlke, Karen L (28)
Luan, Jian'an (28)
Boerwinkle, Eric (28)
Peters, Annette (27)
Mahajan, Anubha (27)
Vitart, Veronique (27)
van der Harst, Pim (27)
Kahonen, Mika (27)
Langenberg, Claudia (26)
Boomsma, Dorret I. (26)
Pramstaller, Peter P ... (26)
Zhao, Jing Hua (26)
Prokopenko, Inga (26)
visa färre...
Lärosäte
Uppsala universitet (64)
Lunds universitet (55)
Karolinska Institutet (37)
Göteborgs universitet (35)
Umeå universitet (31)
Mittuniversitetet (6)
visa fler...
Luleå tekniska universitet (5)
Högskolan Dalarna (5)
Stockholms universitet (4)
Örebro universitet (3)
Handelshögskolan i Stockholm (3)
Jönköping University (1)
visa färre...
Språk
Engelska (107)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (92)
Naturvetenskap (13)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy