SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rennert Gad) "

Sökning: WFRF:(Rennert Gad)

  • Resultat 51-60 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Seyed Khoei, Nazlisadat, et al. (författare)
  • Circulating bilirubin levels and risk of colorectal cancer : serological and Mendelian randomization analyses
  • 2020
  • Ingår i: BMC Medicine. - : Springer Nature. - 1741-7015. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex.METHODS: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10-8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study.RESULTS: The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2).CONCLUSIONS: Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.
  •  
52.
  • Su, Yu-Ru, et al. (författare)
  • Validation of a genetic-enhanced risk prediction model for colorectal cancer in a large community-based cohort
  • 2023
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American association for cancer research. - 1055-9965 .- 1538-7755. ; 32:3, s. 353-362
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance.METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group).RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity.CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort.IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.
  •  
53.
  • Thomas, Minta, et al. (författare)
  • Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
  •  
54.
  • Tian, Yu, et al. (författare)
  • Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk
  • 2024
  • Ingår i: British Journal of Cancer. - : Springer Nature. - 0007-0920 .- 1532-1827. ; 130:10, s. 1687-1696
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk.Methods: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated.Results: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10−8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%–4.0%) vs 6.1% (5.7%–6.5%) (difference 2.4%, P-value = 1.83 × 10−14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%–1.8%) vs 2.2% (1.9%–2.4%) (difference 0.6%, P-value = 1.01 × 10−3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk.Conclusions: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
  •  
55.
  • Tian, Yu, et al. (författare)
  • Genome-Wide Interaction Analysis of Genetic Variants With Menopausal Hormone Therapy for Colorectal Cancer Risk
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 114:8, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal cancer (CRC) risk. METHODS: We conducted a genome-wide, gene-environment interaction between single nucleotide polymorphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486 postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression, 2-step method, and 2- or 3-degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. RESULTS: The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.64 to 0.78; OR = 0.65, 95% CI = 0.53 to 0.79; and OR = 0.73, 95% CI = 0.59 to 0.90, respectively). The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use, whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR = 0.68, 95% CI = 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic variant at 6q22.1 (rs10782186) and MHT use was identified by the 2-degree-of-freedom joint test. The MHT-associated CRC risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI = 0.70 to 0.87) for TT, 0.68 (95% CI = 0.63 to 0.73) for TC, and 0.66 (95% CI = 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis showed suggestive interactions with MHT (2-sided P < 1.2 × 10-4). CONCLUSION: Genetic variants that modify the association between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential mechanisms involved.
  •  
56.
  • Tsilidis, Konstantinos K., et al. (författare)
  • Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent : a Mendelian randomization study
  • 2021
  • Ingår i: American Journal of Clinical Nutrition. - : Oxford University Press. - 0002-9165 .- 1938-3207. ; 113:6, s. 1490-1502
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The literature on associations of circulating concentrations of minerals and vitamins with risk of colorectal cancer is limited and inconsistent. Evidence from randomized controlled trials (RCTs) to support the efficacy of dietary modification or nutrient supplementation for colorectal cancer prevention is also limited.OBJECTIVES: To complement observational and RCT findings, we investigated associations of genetically predicted concentrations of 11 micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, and zinc) with colorectal cancer risk using Mendelian randomization (MR). METHODS: Two-sample MR was conducted using 58,221 individuals with colorectal cancer and 67,694 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions.RESULTS: Nominally significant associations were noted for genetically predicted iron concentration and higher risk of colon cancer [ORs per SD (ORSD): 1.08; 95% CI: 1.00, 1.17; P value = 0.05] and similarly for proximal colon cancer, and for vitamin B-12 concentration and higher risk of colorectal cancer (ORSD: 1.12; 95% CI: 1.03, 1.21; P value = 0.01) and similarly for colon cancer. A nominally significant association was also noted for genetically predicted selenium concentration and lower risk of colon cancer (ORSD: 0.98; 95% CI: 0.96, 1.00; P value = 0.05) and similarly for distal colon cancer. These associations were robust to sensitivity analyses. Nominally significant inverse associations were observed for zinc and risk of colorectal and distal colon cancers, but sensitivity analyses could not be performed. None of these findings survived correction for multiple testing. Genetically predicted concentrations of β-carotene, calcium, copper, folate, magnesium, phosphorus, and vitamin B-6 were not associated with disease risk.CONCLUSIONS: These results suggest possible causal associations of circulating iron and vitamin B-12 (positively) and selenium (inversely) with risk of colon cancer.
  •  
57.
  • Vigorito, Elena, et al. (författare)
  • Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95% CI: 0.68 to 0.79, p-value 2x 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95% CI: 0.59 to 0.80, p-value 1.0 x 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.
  •  
58.
  • Wang, Yuzhuo, et al. (författare)
  • Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls
  • 2020
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 29:7, s. 1423-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated.Methods: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project.Results: We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 x 10(-6)). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 x 10(-3)).Conclusions: Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. Impact: Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
  •  
59.
  • Xia, Zhiyu, et al. (författare)
  • Functional informed genome-wide interaction analysis of body mass index, diabetes and colorectal cancer risk.
  • 2020
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 9:10, s. 3563-3573
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Body mass index (BMI) and diabetes are established risk factors for colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin resistance and glucose homeostasis). Identification of interactions between variation in genes and these metabolic risk factors may identify novel biologic insights into CRC etiology.METHODS: To improve statistical power and interpretation for gene-environment interaction (G × E) testing, we tested genetic variants that regulate expression of a gene together for interaction with BMI (kg/m2 ) and diabetes on CRC risk among 26 017 cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of gene expression data from colon tissue generated in the Genotype-Tissue Expression Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly measure the G × E interaction in a gene by partitioning the interactions into the predicted gene expression levels (fixed effects), and residual G × E effects (random effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by sex. We used false discovery rates to account for multiple comparisons and reported all results with FDR <0.2.RESULTS: Among 4839 genes tested, genetically predicted expressions of FOXA1 (P = 3.15 × 10-5 ), PSMC5 (P = 4.51 × 10-4 ) and CD33 (P = 2.71 × 10-4 ) modified the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10-5 ) and SCN1B (P = 2.76 × 10-4 ) modified the association of BMI on CRC risk for women; and PTPN2 modified the association between diabetes and CRC risk in both sexes (P = 2.31 × 10-5 ).CONCLUSIONS: Aggregating G × E interactions and incorporating functional information, we discovered novel genes that may interact with BMI and diabetes on CRC risk.
  •  
60.
  • Zanti, Maria, et al. (författare)
  • A Likelihood Ratio Approach for Utilizing Case-Control Data in the Clinical Classification of Rare Sequence Variants : Application to BRCA1 and BRCA2
  • 2023
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity-findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 64

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy