SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riess O) "

Sökning: WFRF:(Riess O)

  • Resultat 21-30 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Murakami, Yukei S., et al. (författare)
  • Leveraging SN Ia spectroscopic similarity to improve the measurement of H0
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - 1475-7516. ; 2023:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest spectroscopic differences explain a fraction of the variation in Type Ia supernova (SN Ia) luminosities after light-curve/color standardization. In this work, (i) we empirically characterize the variations of standardized SN Ia luminosities, and (ii) we use a spectroscopically inferred parameter, SIP, to improve the precision of SNe Ia along the distance ladder and the determination of the Hubble constant (H0). First, we show that thePantheon+ covariance model modestly overestimates the uncertainty of standardized magnitudes by ∼ 7%, in the parameter space used by the SH0ES Team to measure H0; accounting for this alone yields H0 = 73.01 ± 0.92 km s-1 Mpc-1. Furthermore, accounting for spectroscopic similarity between SNe Ia on the distance ladder reduces their relative scatter to ∼ 0.12 mag per object (compared to ∼ 0.14 mag previously). Combining these two findings in the model of SN covariance, we find an overall 14% reduction (to ± 0.85 km s-1 Mpc-1) of the uncertainty in the Hubble constant and a modest increase in its value. Including a budget for systematic uncertainties itemized by Riess et al. (2022a), we report an updated local Hubble constant with ∼ 1.2% uncertainty, H0 = 73.29 ± 0.90 km s-1 Mpc-1. We conclude that spectroscopic differences among photometrically standardized SNe Ia do not explain the "Hubble tension". Rather, accounting for such differences increases its significance, as the discrepancy against ΛCDM calibrated by the Planck 2018 measurement rises to 5.7σ.
  •  
22.
  •  
23.
  •  
24.
  • Scolnic, D. M., et al. (författare)
  • The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Omega(m) = 0.307 +/- 0.012 and w = -1.026 +/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H-0 measurements, the analysis yields the most precise measurement of dark energy to date: w(0) = -1.007 +/- 0.089 and w(a) = -0.222 +/- 0.407 for the w(0)w(a) CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2x in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
  •  
25.
  • Scolnic, Dan, et al. (författare)
  • The Pantheon+ analysis : the full data set and light-curve release
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present 1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the Supernovae and H0 for the Equation of State of dark energy distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z < 0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of “SN siblings”—SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al., and the determination of H0 is discussed by Riess et al. These analyses will measure w with ∼3% precision and H0 with ∼1 km s−1 Mpc−1 precision.
  •  
26.
  •  
27.
  • Souche, E, et al. (författare)
  • Recommendations for whole genome sequencing in diagnostics for rare diseases
  • 2022
  • Ingår i: European journal of human genetics : EJHG. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 30:109, s. 1017-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.
  •  
28.
  •  
29.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy