SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) "

Sökning: WFRF:(Rorsman Patrik)

  • Resultat 11-20 av 135
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Amisten, Stefan, et al. (författare)
  • An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans
  • 2013
  • Ingår i: Pharmacology and Therapeutics. - : Elsevier BV. - 0163-7258. ; 139:3, s. 359-391
  • Forskningsöversikt (refereegranskat)abstract
    • G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion. (C) 2013 Elsevier Inc. All rights reserved.
  •  
12.
  • Amisten, Stefan, et al. (författare)
  • Anti-diabetic action of all- trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic beta-cells
  • 2017
  • Ingår i: Endocrine Journal. - 0918-8959. ; 64:3, s. 325-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets express high levels of the orphan G-protein coupled receptor C5C (GPRC5C), the function of which remains to be established. Here we have examined the role of GPRC5C in the regulation of insulin secretion and beta-cell survival and proliferation using human and mouse pancreatic islets. The expression of GPRC5C was analysed by RNA-sequencing, qPCR, western blotting and confocal microscopy. Insulin secretion and cell viability were determined by RIA and MTS assays, respectively. GPRC5C mRNA expression and protein level were reduced in the islets from type-2 diabetic donors. RNA sequencing in human islets revealed GPRC5C expression correlated with the expression of genes controlling apoptosis, cell survival and proliferation. A reduction in Gprc5c mRNA and protein expression was observed in islets isolated from old mice (>46 weeks of age) compared to that in islets from newborn (<3 weeks) mice. Down-regulation of Gprc5c led to both moderately reduced glucose-stimulated insulin release and also reduced cAMP content in mouse islets. Potentiation of glucose-stimulated insulin secretion concomitant with enhanced islet cAMP level by all-trans retinoic acid (ATRA) was attenuated upon Gprc5c-KD. ATRA also increased [Ca+2](i) in Huh7-cells. Gprc5c over expression in Huh7 cells was associated with increased ERK1/2 activity. Gprc5c-KD in clonal MIN6c4 cells reduced cell proliferation and in murine islets increased apoptosis and the sensitivity of primary islet cells to a cocktail of pro-apoptotic cytokines. Our results demonstrate that agents activating GPRC5C represent a novel modality for the treatment and/or prevention of diabetes by restoring and/or maintaining functional beta-cell mass.
  •  
13.
  • Armour, Sarah L., et al. (författare)
  • Glucose Controls Glucagon Secretion by Regulating Fatty Acid Oxidation in Pancreatic α-Cells
  • 2023
  • Ingår i: DIABETES. - 0012-1797 .- 1939-327X. ; 72:10, s. 1446-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-body glucose homeostasis is coordinated through secretion of glucagon and insulin from pancreatic islets. When glucose is low, glucagon is released from alpha-cells to stimulate hepatic glucose production. However, the mechanisms that regulate glucagon secretion from pancreatic alpha-cells remain unclear. Here we show that in alpha-cells, the interaction between fatty acid oxidation and glucose metabolism controls glucagon secretion. The glucose-dependent inhibition of glucagon secretion relies on pyruvate dehydrogenase and carnitine palmitoyl transferase 1a activity and lowering of mitochondrial fatty acid oxidation by increases in glucose. This results in reduced intracellular ATP and leads to membrane repolarization and inhibition of glucagon secretion. These findings provide a new framework for the metabolic regulation of the alpha-cell, where regulation of fatty acid oxidation by glucose accounts for the stimulation and inhibition of glucagon secretion.Article Highlights It has become clear that dysregulation of glucagon secretion and alpha-cell function plays an important role in the development of diabetes, but we do not know how glucagon secretion is regulated. Here we asked whether glucose inhibits fatty acid oxidation in alpha-cells to regulate glucagon secretion. We found that fatty acid oxidation is required for the inhibitory effects of glucose on glucagon secretion through reductions in ATP. These findings provide a new framework for the regulation of glucagon secretion by glucose.
  •  
14.
  •  
15.
  • Barg, Sebastian, et al. (författare)
  • A Subset of 50 Secretory Granules in Close Contact With L-Type Ca(2+) Channels Accounts for First-Phase Insulin Secretion in Mouse beta-Cells.
  • 2002
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 51 Suppl 1, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Capacitance measurements were applied to mouse pancreatic beta-cells to elucidate the cellular mechanisms underlying biphasic insulin secretion. We report here that only <50 of the beta-cell's >10,000 granules are immediately available for release. The releasable granules tightly associate with the voltage-gated alpha(1C) Ca(2+) channels, and it is proposed that the release of these granules accounts for first-phase insulin secretion. Subsequent replenishment of the releasable pool by priming of previously nonreleasable granules is required for second-phase insulin secretion. The latter reaction depends on intragranular acidification due to the concerted action of granular bafilomycin-sensitive v-type H(+)-ATPase and 4,4-diisothiocyanostilbene-2,2-disulfonate--blockable ClC-3 Cl(-) channels. Lowering the cytoplasmic ATP/ADP ratio prevents granule acidification, granule priming, and refilling of the releasable pool. The latter finding provides an explanation to the transient nature of insulin secretion elicited by, for example, high extracellular K(+) in the absence of metabolizable fuels.
  •  
16.
  • Barg, Sebastian, et al. (författare)
  • Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells.
  • 2002
  • Ingår i: Neuron. - 0896-6273 .- 1097-4199. ; 33:2, s. 287-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.
  •  
17.
  • Barg, Sebastian, et al. (författare)
  • Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells
  • 2001
  • Ingår i: Biophysical Journal. - 1542-0086 .- 0006-3495. ; 81:6, s. 3308-3323
  • Tidskriftsartikel (refereegranskat)abstract
    • The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.
  •  
18.
  •  
19.
  • Barg, Sebastian, et al. (författare)
  • Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification
  • 2001
  • Ingår i: Journal of Cell Science. - 0021-9533 .- 1477-9137. ; 114:Pt 11, s. 2145-54
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP-dependent priming of the secretory granules precedes Ca(2+)-regulated neuroendocrine secretion, but the exact nature of this reaction is not fully established in all secretory cell types. We have further investigated this reaction in the insulin-secreting pancreatic B-cell and demonstrate that granular acidification driven by a V-type H(+)-ATPase in the granular membrane is a decisive step in priming. This requires simultaneous Cl(-) uptake through granular ClC-3 Cl(-) channels. Accordingly, granule acidification and priming are inhibited by agents that prevent transgranular Cl(-) fluxes, such as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and an antibody against the ClC-3 channels, but accelerated by increases in the intracellular ATP:ADP ratio or addition of hypoglycemic sulfonylureas. We suggest that this might represent an important mechanism for metabolic regulation of Ca(2+)-dependent exocytosis that is also likely to be operational in other secretory cell types.
  •  
20.
  • Barg, Sebastian, et al. (författare)
  • The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic beta cells is mediated by a 65-kDa mdr-like P-glycoprotein
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 96:10, s. 5539-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular application of the sulfonylurea tolbutamide during whole-cell patch-clamp recordings stimulated exocytosis >5-fold when applied at a cytoplasmic Ca2+ concentration of 0.17 microM. This effect was not detectable in the complete absence of cytoplasmic Ca2+ and when exocytosis was elicited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). The stimulatory action could be antagonized by the sulfonamide diazoxide, by the Cl--channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), by intracellular application of the antibody JSB1 [originally raised against a 170-kDa multidrug resistance (mdr) protein], and by tamoxifen (an inhibitor of the mdr- and volume-regulated Cl- channels). Immunocytochemistry and Western blot analyses revealed that JSB1 recognizes a 65-kDa protein in the secretory granules. This protein exhibited no detectable binding of sulfonylureas and is distinct from the 140-kDa sulfonylurea high-affinity sulfonylurea receptors also present in the granules. We conclude that (i) tolbutamide stimulates Ca2+-dependent exocytosis secondary to its binding to a 140-kDa high-affinity sulfonylurea receptor in the secretory granules; and (ii) a granular 65-kDa mdr-like protein mediates the action. The processes thus initiated culminate in the activation of a granular Cl- conductance. We speculate that the activation of granular Cl- fluxes promotes exocytosis (possibly by providing the energy required for membrane fusion) by inducing water uptake and an increased intragranular hydrostatic pressure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 135
Typ av publikation
tidskriftsartikel (123)
forskningsöversikt (7)
doktorsavhandling (2)
annan publikation (1)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (130)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Rorsman, Patrik (87)
Rorsman, Patrik, 195 ... (43)
Eliasson, Lena (41)
Renström, Erik (34)
Salehi, Albert (21)
Barg, Sebastian (20)
visa fler...
Salehi, S Albert (16)
Galvanovskis, Juris (16)
Zhang, Q. (12)
Göpel, Sven (12)
Zhang, Quan (11)
Ma, Xiaosong (11)
Lundquist, Ingmar (9)
Tarasov, A. I. (9)
Braun, Matthias (9)
Gromada, Jesper (9)
Ashcroft, Frances M. (8)
Ramracheya, Reshma (8)
Bokvist, K (8)
Ramracheya, R. (7)
Chibalina, M. V. (7)
Bengtsson, Martin (7)
Dou, Haiqiang, 1984 (7)
Olofsson, Charlotta (7)
Wendt, Anna (7)
Kanno, T. (6)
Chibalina, Margarita ... (6)
Berggren, Per-Olof (6)
Gromada, J (6)
Wernstedt Asterholm, ... (6)
Obermüller, Stefanie (6)
Clark, A. (5)
Hamilton, Alexander (5)
Mulder, Hindrik (5)
Rosengren, Anders (5)
Holm, Cecilia (5)
Amisten, Stefan (5)
Zhang, Enming (5)
MacDonald, Patrick (5)
Groop, Leif (4)
Rorsman, N. J. G. (4)
Vikman, Jenny (4)
Knudsen, Jakob G. (4)
Wu, Yanling, 1985 (4)
Olofsson, Charlotta ... (4)
Benrick, Anna, 1979- (4)
Johnson, Paul R. V. (4)
Sewing, Sabine (4)
Vergari, E. (4)
Briant, L. J. B. (4)
visa färre...
Lärosäte
Lunds universitet (93)
Göteborgs universitet (45)
Uppsala universitet (30)
Karolinska Institutet (12)
Linköpings universitet (7)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (135)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (119)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy