SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) "

Sökning: WFRF:(Rorsman Patrik)

  • Resultat 41-50 av 135
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Eliasson, Lena, et al. (författare)
  • PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells
  • 1996
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 271:5250, s. 813-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoglycemic sulfonylureas represent a group of clinically useful antidiabetic compounds that stimulate insulin secretion from pancreatic beta cells. The molecular mechanisms involved are not fully understood but are believed to involve inhibition of potassium channels sensitive to adenosine triphosphate (KATP channels) in the beta cell membrane, causing membrane depolarization, calcium influx, and activation of the secretory machinery. In addition to these effects, sulfonylureas also promoted exocytosis by direct interaction with the secretory machinery not involving closure of the plasma membrane KATP channels. This effect was dependent on protein kinase C (PKC) and was observed at therapeutic concentrations of sulfonylureas, which suggests that it contributes to their hypoglycemic action in diabetics.
  •  
42.
  • Eliasson, Lena, et al. (författare)
  • SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells.
  • 2003
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 121:3, s. 181-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of membrane capacitance were applied to dissect the cellular mechanisms underlying PKA-dependent and -independent stimulation of insulin secretion by cyclic AMP. Whereas the PKA-independent (Rp-cAMPS–insensitive) component correlated with a rapid increase in membrane capacitance of ~80 fF that plateaued within ~200 ms, the PKA-dependent component became prominent during depolarizations >450 ms. The PKA-dependent and -independent components of cAMP-stimulated exocytosis differed with regard to cAMP concentration dependence; the Kd values were 6 and 29 µM for the PKA-dependent and -independent mechanisms, respectively. The ability of cAMP to elicit exocytosis independently of PKA activation was mimicked by the selective cAMP-GEFII agonist 8CPT-2Me-cAMP. Moreover, treatment of B-cells with antisense oligodeoxynucleotides against cAMP-GEFII resulted in partial (50%) suppression of PKA-independent exocytosis. Surprisingly, B-cells in islets isolated from SUR1-deficient mice (SUR1-/- mice) lacked the PKA-independent component of exocytosis. Measurements of insulin release in response to GLP-1 stimulation in isolated islets from SUR1-/- mice confirmed the complete loss of the PKA-independent component. This was not attributable to a reduced capacity of GLP-1 to elevate intracellular cAMP but instead associated with the inability of cAMP to stimulate influx of Cl- into the granules, a step important for granule priming. We conclude that the role of SUR1 in the B cell extends beyond being a subunit of the plasma membrane KATP-channel and that it also plays an unexpected but important role in the cAMP-dependent regulation of Ca2+-induced exocytosis.
  •  
43.
  •  
44.
  • Galvanovskis, Juris, et al. (författare)
  • Probability of Exocytosis in Pancreatic β-Cells : Dependence on Ca2+ Sensing Latency Times, Ca2+ Channel Kinetic Parameters, and Channel Clustering
  • 2008
  • Ingår i: Biosimulation in Drug Development. - Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA. - 9783527316991 ; , s. 299-311
  • Bokkapitel (refereegranskat)abstract
    • The fusion of secretory vesicles and granules with the cell membrane prior to the release of their content into the extracellular space requires a transient increase of free Ca2+ concentration in the vicinity of the fusion site. Usually there is a short temporal delay in the onset of the actual fusion of membranes with reference to the rising free Ca2+ levels. This delay is described as a latency time of the Ca2+-sensing system of the secretory machinery and has been observed in several cell types, including pancreatic β-cells. The presence of a delay time of a finite length inherent to the secretory machinery of the cell has an essential effect on the probability for a certain granule to fuse with the cell membrane and to release its contents into the extracellular space during the action potential. We investigate here, theoretically and by numerical simulations, the extent of this influence and its dependence on the parameters of Ca2+ channels, channel clustering, the Ca2+-sensing system, and the length of depolarizing pulses.We use a linear probabilistic model for a random opening and closing of channels that yields an explicit expression for the Laplace transforms of the waiting time distributions for an event that at least one channel is open during the latency time. This allows one in principle to calculate the probability that a vesicle will fuse with the cell membrane during the action potential. We compare our theoretical results with numerical simulatio
  •  
45.
  • Gandasi, Nikhil, et al. (författare)
  • GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion
  • 2023
  • Ingår i: DIABETOLOGIA. - 0012-186X .- 1432-0428.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes.Methods We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36).Results GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by beta-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to omega-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content.Conclusions/interpretation We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.
  •  
46.
  • Gandasi, Nikhil R., et al. (författare)
  • Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes
  • 2017
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 127:6, s. 2353-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of first-phase insulin secretion is an early sign of developing type 2 diabetes (T2D). Ca2+ entry through voltage-gated L-type Ca2+ channels triggers exocytosis of insulin-containing granules in pancreatic β cells and is required for the postprandial spike in insulin secretion. Using high-resolution microscopy, we have identified a subset of docked insulin granules in human β cells and rat-derived clonal insulin 1 (INS1) cells for which localized Ca2+ influx triggers exocytosis with high probability and minimal latency. This immediately releasable pool (IRP) of granules, identified both structurally and functionally, was absent in β cells from human T2D donors and in INS1 cells cultured in fatty acids that mimic the diabetic state. Upon arrival at the plasma membrane, IRP granules slowly associated with 15 to 20 L-type channels. We determined that recruitment depended on a direct interaction with the synaptic protein Munc13, because expression of the II-III loop of the channel, the C2 domain of Munc13-1, or of Munc13-1 with a mutated C2 domain all disrupted L-type channel clustering at granules and ablated fast exocytosis. Thus, rapid insulin secretion requires Munc13-mediated recruitment of L-type Ca2+ channels in close proximity to insulin granules. Loss of this organization underlies disturbed insulin secretion kinetics in T2D.
  •  
47.
  •  
48.
  • Gloyn, A. L., et al. (författare)
  • Every islet matters: improving the impact of human islet research
  • 2022
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors of this Perspective summarize the state of human islet research and compare available islet procurement methods, proposing strategies to increase collaboration and standardization to accelerate discoveries on diabetes. Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
  •  
49.
  • Gromada, Jesper, et al. (författare)
  • CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells
  • 1999
  • Ingår i: Journal of Physiology. - 1469-7793. ; 518:3, s. 745-759
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Measurements of cell capacitance were used to investigate the mechanisms by which acetylcholine (ACh) stimulates Ca2+-induced exocytosis in single insulin-secreting mouse pancreatic B-cells. 2. ACh (250 microM) increased exocytotic responses elicited by voltage-clamp depolarizations 2.3-fold. This effect was mediated by activation of muscarinic receptors and dependent on elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) attributable to mobilization of Ca2+ from intracellular stores. The latter action involved interference with the buffering of [Ca2+]i and the time constant (tau) for the recovery of [Ca2+]i following a voltage-clamp depolarization increased 5-fold. As a result, Ca2+ was present at concentrations sufficient to promote the replenishment of the readily releasable pool of granules (RRP; > 0.2 microM) for much longer periods in the presence than in the absence of the agonist. 3. The effect of Ca2+ on exocytosis was mediated by activation of CaM kinase II, but not protein kinase C, and involved both an increased size of the RRP from 40 to 140 granules and a decrease in tau for the refilling of the RRP from 31 to 19 s. 4. Collectively, the effects of ACh on the RRP and tau result in a > 10-fold stimulation of the rate at which granules are supplied for release.
  •  
50.
  • Gromada, J, et al. (författare)
  • Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
  • 1995
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 44:7, s. 767-774
  • Tidskriftsartikel (refereegranskat)abstract
    • In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 135
Typ av publikation
tidskriftsartikel (123)
forskningsöversikt (7)
doktorsavhandling (2)
annan publikation (1)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (130)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Rorsman, Patrik (87)
Rorsman, Patrik, 195 ... (43)
Eliasson, Lena (41)
Renström, Erik (34)
Salehi, Albert (21)
Barg, Sebastian (20)
visa fler...
Salehi, S Albert (16)
Galvanovskis, Juris (16)
Zhang, Q. (12)
Göpel, Sven (12)
Zhang, Quan (11)
Ma, Xiaosong (11)
Lundquist, Ingmar (9)
Tarasov, A. I. (9)
Braun, Matthias (9)
Gromada, Jesper (9)
Ashcroft, Frances M. (8)
Ramracheya, Reshma (8)
Bokvist, K (8)
Ramracheya, R. (7)
Chibalina, M. V. (7)
Bengtsson, Martin (7)
Dou, Haiqiang, 1984 (7)
Olofsson, Charlotta (7)
Wendt, Anna (7)
Kanno, T. (6)
Chibalina, Margarita ... (6)
Gromada, J (6)
Berggren, Per-Olof (6)
Wernstedt Asterholm, ... (6)
Obermüller, Stefanie (6)
Clark, A. (5)
Hamilton, Alexander (5)
Mulder, Hindrik (5)
Rosengren, Anders (5)
Holm, Cecilia (5)
Amisten, Stefan (5)
Zhang, Enming (5)
MacDonald, Patrick (5)
Groop, Leif (4)
Rorsman, N. J. G. (4)
Vikman, Jenny (4)
Knudsen, Jakob G. (4)
Wu, Yanling, 1985 (4)
Olofsson, Charlotta ... (4)
Benrick, Anna, 1979- (4)
Johnson, Paul R. V. (4)
Sewing, Sabine (4)
Vergari, E. (4)
Briant, L. J. B. (4)
visa färre...
Lärosäte
Lunds universitet (93)
Göteborgs universitet (45)
Uppsala universitet (30)
Karolinska Institutet (12)
Linköpings universitet (7)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (135)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (119)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy