SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruhrmann S) "

Sökning: WFRF:(Ruhrmann S)

  • Resultat 31-40 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Cowan, E., et al. (författare)
  • MicroRNA 29 modulates β-cell mitochondrial metabolism and insulin secretion via underlying miR-29-OXPHOS complex pathways
  • 2024
  • Ingår i: Acta Physiologica. - 1748-1708. ; 240:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: MicroRNAs (miRNAs) regulate β-cell function, and β-cell mitochondria and insulin secretion are perturbed in diabetes. We aimed to identify key miRNAs regulating β-cell mitochondrial metabolism and novel β-cell miRNA-mitochondrial pathways. Methods: TargetScan (http://www.targetscan.org/) was used to predict if 16 miRNAs implicated in β-cell function target 27 cis-eGenes implicated in mitochondrial activity. The expression of candidate miRNAs and insulin secretion after 24 and 1 h pre-incubation in 2.8, 11.1- and 16.7-mM glucose was measured in clonal INS-1 832/13 β-cells. MiR-29 silenced INS-1 832/13 cells were assessed for insulin secretion (glucose, pyruvate, and K+), target cis-eGene expression (Ndufv3 and Ndufa10 components of mitochondrial complex I (CI)), OXPHOS (CI-V) protein expression, and mitochondrial OXPHOS respiration/activity. The expression of differentially expressed miR-29 miRNAs was evaluated in Goto-Kakizaki (GK) rat, db/db mouse and type 2 diabetic (T2D) human islets, as well as NMRI mouse islets cultured under glucolipotoxic conditions. Results: MiR-29, miR-15 and miR-124 were predicted to regulate ~20 cis-eGenes, while miR-29 alone was predicted to regulate ≥12 of these in rat and human species. MiR-29 expression and insulin secretion were reduced in INS-1 832/13 cells after 24 h in elevated glucose. MiR-29 knockdown increased all tested insulin secretory responses, Nudfv3, Ndufa10, complex I and II expression, and cellular mitochondrial OXPHOS. MiR-29 expression was reduced in db/db islets but increased in GK rat and T2D human islets. Conclusion: We conclude miR-29 is a key miRNA in regulating β-cell mitochondrial metabolism and insulin secretion via underlying miR-29-OXPHOS complex pathways. Furthermore, we infer reduced miR-29 expression compensatorily enhances insulin secretion under glucotoxicity.
  •  
32.
  •  
33.
  • Fernandes, SJ, et al. (författare)
  • Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 11996-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Noh, Hyun Ji, et al. (författare)
  • Integrating evolutionary and regulatory information with multispecies approach implicates genes and pathways in obsessive-compulsive disorder
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 x 10(-11)) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy