SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scherer SW) "

Sökning: WFRF:(Scherer SW)

  • Resultat 21-30 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Ombrello, MJ, et al. (författare)
  • Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications
  • 2017
  • Ingår i: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 76:5, s. 906-913
  • Tidskriftsartikel (refereegranskat)abstract
    • Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA.MethodsWe performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes.ResultsThe major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes.ConclusionsThe lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways.
  •  
22.
  •  
23.
  •  
24.
  • Scherer, SW, et al. (författare)
  • Human chromosome 7: DNA sequence and biology
  • 2003
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 300:5620, s. 767-772
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.
  •  
25.
  • Stamouli, S, et al. (författare)
  • Copy Number Variation Analysis of 100 Twin Pairs Enriched for Neurodevelopmental Disorders
  • 2018
  • Ingår i: Twin research and human genetics : the official journal of the International Society for Twin Studies. - : Cambridge University Press (CUP). - 1832-4274. ; 21:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Hundreds of penetrant risk loci have been identified across different neurodevelopmental disorders (NDDs), and these often involve rare (<1% frequency) copy number variations (CNVs), which can involve one or more genes. Monozygotic (MZ) twin pairs are long thought to share 100% of their genomic information. However, genetic differences in the form of postzygotic somatic variants have been reported recently both in typically developing (TD) and in clinically discordant MZ pairs. We sought to investigate the contribution of rare CNVs in 100 twin pairs enriched for NDD phenotypes with a particular focus on postzygotic CNVs in MZ pairs discordant for autism spectrum disorder (ASD) using the Illumina Infinium PsychArray. In our sample, no postzygotic de novo CNVs were found in 55 MZ twin pairs, including the 13 pairs discordant for ASD. We did detect a higher rate of CNVs overlapping genes involved in disorders of the nervous system, such as a rare deletion affecting HNRNPU, in MZ pairs discordant and concordant for ASD in comparison with TD pairs (p = .02). Our results are in concordance with earlier findings that postzygotic de novo CNV events are typically rare in genomic DNA derived from saliva or blood, and suggests that the discordance of NDDs in our sample of twins is not explained by discordant CNVs. Still, studies investigating postzygotic variation in MZ discordant twins using DNA from different tissues and single cells and higher resolution genomics are needed in the future.
  •  
26.
  •  
27.
  •  
28.
  • Uddin, M, et al. (författare)
  • Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 28663-
  • Tidskriftsartikel (refereegranskat)abstract
    • A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10−15) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10−50, OR = 2.11) and adult (P < 6.03 × 10−18, OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs.
  •  
29.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy