SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schubert Simone) "

Sökning: WFRF:(Schubert Simone)

  • Resultat 61-70 av 208
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  •  
62.
  •  
63.
  •  
64.
  • Bandopadhayay, Pratiti, et al. (författare)
  • BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma
  • 2014
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 20:4, s. 912-925
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma.Experimental Design:We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice.Results:Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index.Conclusion:JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma.
  •  
65.
  •  
66.
  • Salminen, Tiina, et al. (författare)
  • Increased integrity of white matter pathways after dual n-back training
  • 2016
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 133, s. 244-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task.
  •  
67.
  • Schubert, Kaja, et al. (författare)
  • The electronic structure and deexcitation pathways of an isolated metalloporphyrin ion resolved by metal L-edge spectroscopy
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 12:11, s. 3966-3976
  • Tidskriftsartikel (refereegranskat)abstract
    • The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX+) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin. The obtained mass spectra reveal that resonant excitations of CoPPIX+at the cobalt L3-edge lead predominantly to the formation of the intact radical dication and doubly charged fragments through losses of charged and neutral side chains from the macrocycle. The comparison between experiment and theory shows that CoPPIX+is in a3A2gtriplet ground state and that competing excitations to metal-centred non-bonding and antibonding σ* molecular orbitals lead to distinct deexcitation pathways.
  •  
68.
  • Waldhuber, Anna, et al. (författare)
  • Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation
  • 2016
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 126:7, s. 36-2425
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor-containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1β by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1β secretion was minimal in CFT073-infected macrophages; however, IL-1β release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1β secretion by CFT073 and tcpC-deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1β levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract.
  •  
69.
  • Aad, G., et al. (författare)
  • 2014
  • Tidskriftsartikel (refereegranskat)
  •  
70.
  • Aad, G., et al. (författare)
  • 2014
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813 .- 1089-490X. ; 90:4
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 208

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy