SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singleton A) "

Sökning: WFRF:(Singleton A)

  • Resultat 41-50 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Ferrari, Raffaele, et al. (författare)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • Ingår i: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
47.
  • Guerreiro, R., et al. (författare)
  • Heritability and genetic variance of dementia with Lewy bodies
  • 2019
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 127, s. 492-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson's disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants. © 2019 Elsevier Inc.
  •  
48.
  • Guerreiro, R., et al. (författare)
  • Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study
  • 2018
  • Ingår i: Lancet Neurology. - 1474-4422. ; 17:1, s. 64-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2.40, 95% CI 2.14-2.70; p=1.05 x 10-48), SNCA (rs7681440; OR 0.73, 0.66-0.81; p=6.39 x 10(-10)), and GBA (rs35749011; OR 2.55, 1.88-3.46; p=1.78 x 10(-9)). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1.51, 1.27-1.79; p=2.32 x 10(-6)); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease.
  •  
49.
  • Manzoni, Claudia, et al. (författare)
  • Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia
  • 2024
  • Ingår i: American Journal of Human Genetics. - 0002-9297. ; 111:7, s. 1316-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
  •  
50.
  • Stolk, Lisette, et al. (författare)
  • Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:3, s. 260-268
  • Tidskriftsartikel (refereegranskat)abstract
    • To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 111
Typ av publikation
tidskriftsartikel (105)
konferensbidrag (2)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (101)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Hardy, J (27)
Singleton, AB (25)
Pastor, P (20)
Singleton, A (20)
Rogaeva, E (19)
Hernandez, DG (16)
visa fler...
Ferrucci, L (15)
Ferrucci, Luigi (15)
Gudnason, V (14)
Diez-Fairen, M (14)
Singleton, Andrew (13)
Nalls, MA (12)
Ikram, MA (12)
Singleton, Andrew B. (12)
Kruger, R (12)
Kim, YJ (11)
Lleó, A. (11)
May, P (11)
Schmidt, H. (10)
van Duijn, CM (10)
Sharma, M. (10)
Seshadri, S (10)
Bis, JC (10)
Nothen, MM (10)
Schmidt, R (10)
Lehtimaki, T. (10)
Gasser, T. (10)
Psaty, Bruce M (10)
Elbaz, A. (10)
Morgan, K (10)
Lichtner, P (10)
Van Deerlin, VM (10)
Trojanowski, JQ (10)
Ruiz, A. (9)
Pedersen, NL (9)
Padovani, A (9)
Teumer, A (9)
Hofman, A (9)
Uitterlinden, AG (9)
Scheltens, Philip (9)
Clarimón, J. (9)
St George-Hyslop, P (9)
Lind, L (9)
Graff, C (9)
Ossenkoppele, Rik (9)
Jarvelin, MR (9)
Nalls, Michael A. (9)
Scarpini, E (9)
Nacmias, B (9)
Tanaka, Toshiko (9)
visa färre...
Lärosäte
Karolinska Institutet (61)
Lunds universitet (48)
Uppsala universitet (22)
Göteborgs universitet (21)
Umeå universitet (15)
Stockholms universitet (5)
visa fler...
Örebro universitet (2)
Högskolan i Skövde (2)
Linköpings universitet (1)
visa färre...
Språk
Engelska (111)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (64)
Naturvetenskap (11)
Samhällsvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy