SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singleton Andrew B.) "

Sökning: WFRF:(Singleton Andrew B.)

  • Resultat 21-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Larsson, Susanna C., et al. (författare)
  • No clear support for a role for vitamin D in Parkinson's disease : A Mendelian randomization study.
  • 2017
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 32:8, s. 1249-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Observational studies have found that relative to healthy controls, patients with Parkinson's disease have lower circulating concentrations of 25-hydroxyvitamin D, a clinical biomarker of vitamin D status. However, the causality of this association is uncertain. We undertook a Mendelian randomization study to investigate whether genetically decreased 25-hydroxyvitamin D concentrations are associated with PD to minimize confounding and prevent bias because of reverse causation.METHODS: As instrumental variables for the Mendelian randomization analysis, we used 4 single-nucleotide polymorphisms that affect 25-hydroxyvitamin D concentrations (rs2282679 in GC, rs12785878 near DHCR7, rs10741657 near CYP2R1, and rs6013897 near CYP24A1). Summary effect size estimates of the 4 single-nucleotide polymorphisms on PD were obtained from the International Parkinson's Disease Genomics Consortium (including 5333 PD cases and 12,019 controls). The estimates of the 4 single-nucleotide polymorphisms were combined using an inverse-variance weighted meta-analysis.RESULTS: Of the 4 single-nucleotide polymorphisms associated with 25-hydroxyvitamin D concentrations, one (rs6013897 in CYP24A1) was associated with PD (odds ratio per 25-hydroxyvitamin D-decreasing allele, 1.09; 95% confidence interval, 1.02-1.16; P = 0.008), whereas no association was observed with the other 3 single-nucleotide polymorphisms (P > 0.23). The odds ratio of PD per genetically predicted 10% lower 25-hydroxyvitamin D concentration, based on the 4 single-nucleotide polymorphisms, was 0.98 (95% confidence interval, 0.93-1.04; P = 0.56).CONCLUSIONS: This Mendelian randomization study provides no clear support that lowered 25-hydroxyvitamin D concentration is causally associated with risk of PD. © 2017 International Parkinson and Movement Disorder Society.
  •  
22.
  • Liu, Hui, et al. (författare)
  • Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors
  • 2022
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 92:2, s. 270-278
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available.METHODS: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership-Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses.RESULTS: A higher polygenic resilience score was associated with a lower risk for PD (β = -0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci.INTERPRETATION: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 2022;92:270-278.
  •  
23.
  • Pfeiffer, Liliane, et al. (författare)
  • DNA methylation of lipid-related genes affects blood lipid levels.
  • 2015
  • Ingår i: Circulation. - 1942-325X .- 1942-3268. ; 8:2, s. 334-42
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction.METHODS AND RESULTS: Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=-0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06-1.25).CONCLUSIONS: Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases.
  •  
24.
  • Schlebusch, Carina M., et al. (författare)
  • Genomic Variation in Seven Khoe-San Groups Reveals Adaptation and Complex African History
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 338:6105, s. 374-379
  • Tidskriftsartikel (refereegranskat)abstract
    • The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ∼2.3 million SNPs in 220 southern Africans and found that the Khoe-San diverged from other populations ≥100,000 years ago, but structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa; instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response, potential adaptive introgression of UV-light protection, and selection predating modern human diversification involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy