SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spaans M.) "

Sökning: WFRF:(Spaans M.)

  • Resultat 21-30 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Greve, T. R., et al. (författare)
  • Star Formation Relations and CO-Spectral Line Energy Distributions Across the J-Ladder and Redshift
  • 2014
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 794:2, s. Art. no. 142-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., a similar or equal to 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (beta similar to 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (similar to 100 K) and dense (>10(4) cm(-3)) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.
  •  
22.
  • Mangum, J. G., et al. (författare)
  • Densitometry and Thermometry of Starburst Galaxies
  • 2016
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759820221 ; 75-76, s. 61-65
  • Konferensbidrag (refereegranskat)abstract
    • With a goal toward deriving the physical conditions in external galaxies, we have conducted a survey and subsequent high spatial resolution imaging of formaldehyde (H2CO) and ammonia (NH3) emission and absorption in a sample of starburst galaxies. In this article we present the results from a subset of this survey which focuses on high spatial resolution measurements of volume density-and kinetic temperature-sensitive transitions of the H2CO molecule. The volume density structure toward the nuclear region of NGC 253 has been derived from ? ≠4 arcsec NRAO Very Large Array (VLA) measurements of the 110-111 and 211-212 K-doublet transitions of H2CO. The kinetic temperature structure toward NGC 253 and NGC 4945 has been derived from ? ≠0.5-1.0 arcsec measurements of the H2CO 3K-1K+1-2K-1K+1 (near 218 GHz) and 5K-1K+1-4K-1K+1 (near 365 GHz) transitions acquired using the Atacama Large Millimeter/submillimeter Array (ALMA). These measurements have allowed us to characterize the dense gas and kinetic temperature structure within these star forming galaxies, which is a first step toward associating dense star-forming gas and the heating processes at work within galaxies.
  •  
23.
  • Sakamoto, K., et al. (författare)
  • P Cygni Profiles of Molecular Lines Toward Arp 220 Nuclei
  • 2009
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 700:2, s. L104-L108
  • Tidskriftsartikel (refereegranskat)abstract
    • We report ~100 pc (0farcs3) resolution observations of (sub)millimeter HCO+ and CO lines in the ultraluminous infrared galaxy Arp 220. The lines peak at two merger nuclei, with HCO+ being more spatially concentrated than CO. Asymmetric line profiles with blueshifted absorption and redshifted emission are discovered in HCO+(3-2) and (4-3) toward the two nuclei and in CO(3-2) toward one nucleus. We suggest that these P Cygni profiles are due to ~100 km s–1 outward motion of molecular gas from the nuclei. This gas is most likely outflowing from the inner regions of the two nuclear disks rotating around individual nuclei, clearing the shroud around the luminosity sources there.
  •  
24.
  • Viti, S., et al. (författare)
  • Molecular line emission in NGC 1068 imaged with ALMA II. The chemistry of the dense molecular gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. 28-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO+, HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~200 pc circumnuclear disc (CND) and the ~1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry.Methods. We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas.Results. We find that, in general, the gas in the CND is very dense (>105 cm-3) and hot (T> 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components.Conclusions. The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to determine quantitatively the physical and chemical characteristics of these components.
  •  
25.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
26.
  • Baan, Willem, et al. (författare)
  • Multimolecular studies of Galactic star-forming regions
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 445:4, s. 3331-3344
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating by stellar radiation and non-radiative feedback processes. The line ratios of characteristic tracer molecules may be interpreted using the contributions of two distinct components: a cold (40-50 K) and high-density (105-105.5 cm(-3)) photon-dominated region (PDR) with a nominal UV flux density and a warm (similar to 300 K) mechanical heating-dominated region (MHDR) with a slightly lower density (10(4.5)-10(5) cm(-3)). The relative contributions of these structural components are used to model the observed line ratios. Ionized species may be better modelled by adopting an increase of the cosmic ray flux towards the Galactic Centre and the sulphur abundance should depleted by a factor of 200-400 relative to solar values. The line ratios of the Galactic sample are found to be very similar to those of the integrated signature of prominent (ultra) luminous IR Galaxies. The PDRs and MHDRs in the isolated Galactic regions may be modelled with slightly higher mean densities than in extragalactic systems and a higher MHDR temperature resulting from non-radiative mechanical heating. Multimolecular studies are effective in determining the physical and chemical properties of star formation regions by using characteristic line ratios to diagnose their environment. The addition of more molecular species will reduce the existing modelling redundancy.
  •  
27.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies -- An ALMA mm-wave spectral scan of NGC 4418
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582, s. A91-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions.Aims. Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments.Methods. We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis.Results. We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments.Conclusions. Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar molecular abundances observed toward NCG 4418 and Arp 220 are consistent with a hot gas-phase chemistry, with the relative abundances of SiO and CH3OH being regulated by shocks and X-ray driven dissociation. The bright emission from vibrationally excited species confirms the presence of a compact IR source, with an effective diameter smaller than 5 pc and brightness temperatures higher than 350 K. The molecular abundances and the vibrationally excited spectrum are consistent with a young AGN/starburst system. We suggest that NGC 4418 may be a template for a new kind of chemistry and excitation, typical of CON. Because of the narrow line widths and bright molecular emission, NGC 4418 is the ideal target for further studies of the chemistry in CONs.
  •  
28.
  • Loenen, A. F., et al. (författare)
  • Extragalactic Chemistry: HCN, HNC, and HCO+ : M. , W. A. Baan, and R.
  • 2008
  • Ingår i: EAS Publications Series. - : EAS, EDP Sciences. - 1633-4760 .- 1638-1963. ; 31, s. 183-185
  • Tidskriftsartikel (refereegranskat)abstract
    • High- and low-density tracer molecules have been observed in (Ultra-) Luminous Infrared Galaxies in order to initiate multi-molecule multi-transition studies to evaluate the physical and chemical environment of the nuclear medium and the ongoing nuclear activity. The data, augmented with data available in the literature, are presented in Baan et al. (2007), which also presents a first order analysis. Here, we present the chemical analysis of the J=1–0 transition lines of HCN, HNC, and HCO+.
  •  
29.
  • Loenen, A. F., et al. (författare)
  • Mechanical feedback in the molecular ISM of luminous IR galaxies
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 488:1, s. L5-L8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Molecular emission lines originating in the nuclei of luminous infra-red galaxies are used to determine the physical properties of the nuclear ISM in these systems.Methods. A large observational database of molecular emission lines is compared with model predictions that include heating by UV and X-ray radiation, mechanical heating, and the effects of cosmic rays.Results. The observed line ratios and model predictions imply a separation of the observed systems into three groups: XDRs, UV-dominated high-density ( $n \geq 10^5$ cm-3) PDRs, and lower-density ( n = 104.5 cm-3) PDRs that are dominated by mechanical feedback.Conclusions. The division of the two types of PDRs follows naturally from the evolution of the star formation cycle of these sources, which evolves from deeply embedded young stars, resulting in high-density ( $n \geq 10^5$ cm-3) PDRs, to a stage where the gas density has decreased ( n = 104.5 cm-3) and mechanical feedback from supernova shocks dominates the heating budget.
  •  
30.
  • Pérez-Beaupuits, J.P., et al. (författare)
  • HNC and HCN in Seyfert Galaxies
  • 2008
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. ; 31, s. 195-196
  • Konferensbidrag (refereegranskat)abstract
    • What are the physical conditions in the nuclear region of Seyfert galaxies? Can we asses the predominant nuclear source of power starburst or AGN by using high density gas tracers? We have used SEST, JCMT, and IRAM 30 m telescopes to observe the J=1-0, J=3-2, and J=4-3 transition lines of HNC and HCN in the Seyfert 2 galaxies NGC 1068 and NGC 3079. We model the excitatioon conditions of these molecules based on the observed 3–2/1–0 line intensity ratios. In these proceedings we show the line ratios and discuss the excitation conditions modeled. We summarize our results and conclusions as follows: in NGC 1068, the emission of HNC emerges from lower (<10^5 {cm-3}) density gas than HCN (>10^5 {cm-3}). Instead, the emission of HNC and HCN emerges from the same gas in NGC 3079. The observed HCN/HNC line ratios favor a PDR scenario rather than an XDR one. However, the N(HNC)/N(HCN) column density ratios obtained for NGC 3079 can be found only in XDR environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy