SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Syvänen Ann Christine 1950 ) "

Search: WFRF:(Syvänen Ann Christine 1950 )

  • Result 21-30 of 56
Sort/group result
   
EnumerationReferenceCoverFind
21.
  •  
22.
  • Farias, Fabiana H. G., et al. (author)
  • A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts
  • 2019
  • In: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 27, s. 432-441
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects.
  •  
23.
  • Hagberg, Niklas, 1977-, et al. (author)
  • The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE
  • 2018
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:7, s. 1070-1077
  • Journal article (peer-reviewed)abstract
    • Objectives Genetic variants in the transcription factor STAT4 are associated with increased susceptibility to systemic lupus erythematosus (SLE) and a more severe disease phenotype. This study aimed to clarify how the SLE-associated intronic STAT4 risk allele rs7574865[T] affects the function of immune cells in SLE.Methods Peripheral blood mononuclear cells (PBMCs) were isolated from 52 genotyped patients with SLE. Phosphorylation of STAT4 (pSTAT4) and STAT1 (pSTAT1) in response to interferon (IFN)-α, IFN-γ or interleukin (IL)-12, total levels of STAT4, STAT1 and T-bet, and frequency of IFN-γ+ cells on IL-12 stimulation were determined by flow cytometry in subsets of immune cells before and after preactivation of cells with phytohaemagglutinin (PHA) and IL-2. Cellular responses and phenotypes were correlated to STAT4 risk allele carriership. Janus kinase inhibitors (JAKi) selective for TYK2 (TYK2i) or JAK2 (JAK2i) were evaluated for inhibition of IL-12 or IFN-γ-induced activation of SLE PBMCs.Results In resting PBMCs, the STAT4 risk allele was neither associated with total levels of STAT4 or STAT1, nor cytokine-induced pSTAT4 or pSTAT1. Following PHA/IL-2 activation, CD8+ T cells from STAT4 risk allele carriers displayed increased levels of STAT4 resulting in increased pSTAT4 in response to IL-12 and IFN-α, and an augmented IL-12-induced IFN-γ production in CD8+ and CD4+ T cells. The TYK2i and the JAK2i efficiently blocked IL-12 and IFN-γ-induced activation of PBMCs from STAT4 risk patients, respectively.Conclusions T cells from patients with SLE carrying the STAT4 risk allele rs7574865[T] display an augmented response to IL-12 and IFN-α. This subset of patients may benefit from JAKi treatment.
  •  
24.
  • Idborg, Helena, et al. (author)
  • Circulating Levels of Interferon Regulatory Factor-5 Associates With Subgroups of Systemic Lupus Erythematosus Patients
  • 2019
  • In: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Journal article (peer-reviewed)abstract
    • Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease, which currently lacks specific diagnostic biomarkers. The diversity within the patients obstructs clinical trials but may also reflect differences in underlying pathogenesis. Our objective was to obtain protein profiles to identify potential general biomarkers of SLE and to determine molecular subgroups within SLE for patient stratification. Plasma samples from a cross-sectional study of well-characterized SLE patients (n = 379) and matched population controls (n = 316) were analyzed by antibody suspension bead array targeting 281 proteins. To investigate the differences between SLE and controls, Mann-Whitney U-test with Bonferroni correction, generalized linear modeling and receiver operating characteristics (ROC) analysis were performed. K-means clustering was used to identify molecular SLE subgroups. We identified Interferon regulating factor 5 (IRF5), solute carrier family 22 member 2 (SLC22A2) and S100 calcium binding protein A12 (S100A12) as the three proteins with the largest fold change between SLE patients and controls (SLE/Control = 1.4, 1.4, and 1.2 respectively). The lowest p-values comparing SLE patients and controls were obtained for S100A12, Matrix metalloproteinase-1 (MMP1) and SLC22A2 (p(adjusted) = 3 x 10(-9), 3 x 10(-6), and 5 x 10(-6) respectively). In a set of 15 potential biomarkers differentiating SLE patients and controls, two of the proteins were transcription factors, i.e., IRF5 and SAM pointed domain containing ETS transcription factor (SPDEF). IRF5 was up-regulated while SPDEF was found to be down-regulated in SLE patients. Unsupervised clustering of all investigated proteins identified three molecular subgroups among SLE patients, characterized by (1) high levels of rheumatoid factor-IgM, (2) low IRF5, and (3) high IRF5. IRF5 expressing microparticles were analyzed by flow cytometry in a subset of patients to confirm the presence of IRF5 in plasma and detection of extracellular IRF5 was further confirmed by immunoprecipitation-mass spectrometry (IP-MS). Interestingly IRF5, a known genetic risk factor for SLE, was detected extracellularly and suggested by unsupervised clustering analysis to differentiate between SLE subgroups. Our results imply a set of circulating molecules as markers of possible pathogenic importance in SLE. We believe that these findings could be of relevance for understanding the pathogenesis and diversity of SLE, as well as for selection of patients in clinical trials.
  •  
25.
  • Imgenberg-Kreuz, Juliana, et al. (author)
  • DNA Methylation-Based Interferon Scores Associate With Sub-Phenotypes in Primary Sjögren's Syndrome
  • 2021
  • In: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 12
  • Journal article (peer-reviewed)abstract
    • Primary Sjogren's syndrome (pSS) is an autoimmune inflammatory disease with profound clinical heterogeneity, where excessive activation of the type I interferon (IFN) system is considered one of the key mechanisms in disease pathogenesis. Here we present a DNA methylation-based IFN system activation score (DNAm IFN score) and investigate its potential associations with sub-phenotypes of pSS. The study comprised 100 Swedish patients with pSS and 587 Swedish controls. For replication, 48 patients with pSS from Stavanger, Norway, were included. IFN scores were calculated from DNA methylation levels at the IFN-induced genes RSAD2, IFIT1 and IFI44L. A high DNAm IFN score, defined as > mean(controls) +2SD(controls) (IFN score > 4.4), was observed in 59% of pSS patients and in 4% of controls (p=1.3x10(-35)). Patients with a high DNAm IFN score were on average seven years younger at symptom onset (p=0.017) and at diagnosis (p=3x10(-3)). The DNAm IFN score levels were significantly higher in pSS positive for both SSA and SSB antibodies compared to SSA/SSB negative patients (p(discovery)=1.9x10(-8), p(replication)=7.8x10(-4)). In patients positive for both SSA subtypes Ro52 and Ro60, an increased score was identified compared to single positive patients (p=0.022). Analyzing the discovery and replication cohorts together, elevated DNAm IFN scores were observed in pSS with hypergammaglobulinemia (p=2x10(-8)) and low C4 (p=1.5x10(-3)) compared to patients without these manifestations. Patients < 70 years with ongoing lymphoma at DNA sampling or lymphoma at follow-up (n=7), presented an increased DNAm IFN score compared to pSS without lymphoma (p=0.025). In conclusion, the DNAm-based IFN score is a promising alternative to mRNA-based scores for identification of patients with activation of the IFN system and may be applied for patient stratification guiding treatment decisions, monitoring and inclusion in clinical trials.
  •  
26.
  • Imgenberg-Kreuz, Juliana, et al. (author)
  • DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus
  • 2018
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:5, s. 736-743
  • Journal article (peer-reviewed)abstract
    • Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with heterogeneous presentation and complex aetiology where DNA methylation changes are emerging as a contributing factor. In order to discover novel epigenetic associations and investigate their relationship to genetic risk for SLE, we analysed DNA methylation profiles in a large collection of patients with SLE and healthy individuals.Methods: DNA extracted from blood from 548 patients with SLE and 587 healthy controls were analysed on the Illumina HumanMethylation 450 k BeadChip, which targets 485 000 CpG sites across the genome. Single nucleotide polymorphism (SNP) genotype data for 196 524 SNPs on the Illumina ImmunoChip from the same individuals were utilised for methylation quantitative trait loci (cis-meQTLs) analyses.Results: We identified and replicated differentially methylated CpGs (DMCs) in SLE at 7245 CpG sites in the genome. The largest methylation differences were observed at type I interferon-regulated genes which exhibited decreased methylation in SLE. We mapped cis-meQTLs and identified genetic regulation of methylation levels at 466 of the DMCs in SLE. The meQTLs for DMCs in SLE were enriched for genetic association to SLE, and included seven SLE genome-wide association study (GWAS) loci: PTPRC (CD45), MHC-class III, UHRF1BP1, IRF5, IRF7, IKZF3 and UBE2L3. In addition, we observed association between genotype and variance of methylation at 20 DMCs in SLE, including at the HLA-DQB2 locus.Conclusions: Our results suggest that several of the genetic risk variants for SLE may exert their influence on the phenotype through alteration of DNA methylation levels at regulatory regions of target genes.
  •  
27.
  •  
28.
  • Imgenberg-Kreuz, Juliana, et al. (author)
  • Shared and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjogren's Syndrome
  • 2019
  • In: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Journal article (peer-reviewed)abstract
    • Objectives: To performa cross-comparative analysis of DNA methylation in patients with systemic lupus erythematosus (SLE), patients with primary Sjogren's syndrome (pSS), and healthy controls addressing the question of epigenetic sharing and aiming to detect disease-specific alterations. Methods: DNA extracted from peripheral blood from 347 cases with SLE, 100 cases with pSS, and 400 healthy controls were analyzed on the Human Methylation 450k array, targeting 485,000 CpG sites across the genome. A linear regression model including age, sex, and blood cell type distribution as covariates was fitted, and association p-values were Bonferroni corrected. A random forest machine learning classifier was designed for prediction of disease status based on DNA methylation data. Results: We established a combined set of 4,945 shared differentially methylated CpG sites (DMCs) in SLE and pSS compared to controls. In pSS, hypomethylation at type I interferon induced genes was mainly driven by patients who were positive for Ro/SSA and/or La/SSB autoantibodies. Analysis of differential methylation between SLE and pSS identified 2,244 DMCs with a majority of sites showing decreased methylation in SLE compared to pSS. The random forest classifier demonstrated good performance in discerning between disease status with an area under the curve (AUC) between 0.83 and 0.96. Conclusions: The majority of differential DNA methylation is shared between SLE and pSS, however, important quantitative differences exist. Our data highlight neutrophil dysregulation as a shared mechanism, emphasizing the role of neutrophils in the pathogenesis of systemic autoimmune diseases. The current study provides evidence for genes and molecular pathways driving common and disease-specific pathogenic mechanisms.
  •  
29.
  • Imgenberg-Kreuz, Juliana, et al. (author)
  • Transcription profiling of peripheral B cells in antibody-positive primary Sjogren's syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature
  • 2018
  • In: Scandinavian Journal of Immunology. - : Wiley. - 0300-9475 .- 1365-3083. ; 87:5
  • Journal article (peer-reviewed)abstract
    • B cells play a key role in the pathogenesis of primary Sjogren's syndrome (pSS). The aim of this study was to analyse the transcriptome of CD19+ B cells from patients with pSS and healthy controls to decipher the B cell-specific contribution to pSS. RNA from purified CD19+ B cells from 12 anti-SSA antibody-positive untreated female patients with pSS and 20 healthy blood donors was subjected to whole transcriptome sequencing. A false discovery rate corrected significance threshold of <0.05 was applied to define differential gene expression. As validation, gene expression in B cells from 17 patients with pSS and 16 healthy controls was analysed using a targeted gene panel. RNA-sequencing identified 4047 differentially expressed autosomal genes in pSS B cells. Upregulated expression of type I and type II interferon (IFN)-induced genes was observed, establishing an IFN signature in pSS B cells. Among the top upregulated and validated genes were CX3CR1, encoding the fractalkine receptor involved in regulation of B-cell malignancies, CCL5/RANTES and CCR1. Increased expression of several members of the TNF superfamily was also identified; TNFSF4/Ox40L, TNFSF10/TRAIL, TNFSF13B/BAFF, TNFRSF17/BCMA as well as S100A8 and -A9/calprotectin, TLR7, STAT1 and STAT2. Among genes with downregulated expression in pSS B cells were SOCS1 and SOCS3, CD70 and TNFAIP3/A20. We conclude that B cells from patients with anti-SSA antibody-positive pSS display immune activation with upregulated expression of chemokines, chemokine receptors and a prominent type I and type II IFN signature, while suppressors of cytokine signalling are downregulated. This adds insight into the autoimmune process and suggests potential targets for future functional studies.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 21-30 of 56
Type of publication
journal article (49)
other publication (4)
doctoral thesis (2)
research review (1)
Type of content
peer-reviewed (46)
other academic/artistic (10)
Author/Editor
Syvänen, Ann-Christi ... (56)
Rönnblom, Lars (27)
Sandling, Johanna K. (25)
Svenungsson, Elisabe ... (20)
Gunnarsson, Iva (19)
Leonard, Dag, 1975- (19)
show more...
Eloranta, Maija-Leen ... (17)
Sjöwall, Christopher (15)
Jönsen, Andreas (14)
Nordmark, Gunnel (14)
Bengtsson, Anders A. (14)
Rantapää-Dahlqvist, ... (13)
Nordlund, Jessica (12)
Imgenberg-Kreuz, Jul ... (12)
Alexsson, Andrei (8)
Carlsson Almlöf, Jon ... (6)
Raine, Amanda (6)
Padyukov, Leonid (5)
Almlöf, Jonas Carlss ... (5)
Lind, Lars (4)
Andersson, Göran (4)
Lindblad-Toh, Kersti ... (4)
Lundmark, Anders (4)
Jacobsen, Søren (4)
Nystedt, Sara (4)
Frodlund, Martina (4)
Noren-Nyström, Ulrik ... (4)
Nilsson, Peter (3)
Bengtsson, Anders (3)
Cavelier, Lucia (3)
Kozyrev, Sergey V. (3)
Abrahamsson, Jonas, ... (3)
Forestier, Erik (3)
Dahlqvist, Johanna, ... (3)
Tandre, Karolina (3)
Sarkisyan, Daniil (3)
Bakalkin, Georgy (3)
Melander, Olle (3)
Wahren-Herlenius, Ma ... (3)
Freedman, Barry I. (3)
Wareham, Nicholas J. (3)
Langenberg, Claudia (3)
Heyman, M. (3)
Dahlberg, Johan (3)
Pucholt, Pascal (3)
Grosso, Giorgia (3)
Palmer, Colin N. A. (3)
Omdal, Roald (3)
Dupuis, Josée (3)
Meigs, James B. (3)
show less...
University
Uppsala University (56)
Karolinska Institutet (35)
Umeå University (19)
Lund University (19)
Linköping University (14)
University of Gothenburg (6)
show more...
Swedish University of Agricultural Sciences (4)
Royal Institute of Technology (3)
Stockholm University (2)
Örebro University (2)
show less...
Language
English (56)
Research subject (UKÄ/SCB)
Medical and Health Sciences (55)
Natural sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view