SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tardocchi M.) "

Sökning: WFRF:(Tardocchi M.)

  • Resultat 41-50 av 151
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Kiptily, V. G., et al. (författare)
  • Observation of alpha-particles in recent D-T experiments on JET
  • 2024
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 64:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The fusion reaction between deuterium and tritium, D(T,n)4 He is the main source of energy in future thermonuclear reactors. Alpha-particles (4 He-ions) born with an average energy of 3.5 MeV transferring energy to the thermal plasma during their slowing down, should provide the self-sustained D-T plasma burn. The adequate confinement of alpha-particles is essential to provide efficient heating of the bulk plasma and steady burning of a reactor plasma. That is why the fusion-born alpha-particle studies have been a priority task in the second D-T experiments (DTE2) on the Joint European Torus (JET) to understand the main mechanisms of their slowing down, redistribution and losses and to develop optimal plasma scenarios. JET with Be-wall and W-divertor, enhanced auxiliary heating systems and improved energetic-particle diagnostic capabilities, producing significant population of alpha-particles, provided the possibility for comprehensive studying of the alpha-particle behaviour. Selected results of the confined and lost alpha-particle measurements, evidence of alpha-particle self-heating and assessments of the fusion performance are presented in this paper giving an opportunity for further modelling and extrapolation to the International Thermonuclear Experimental Reactor and burning plasma reactors.
  •  
42.
  • Lerche, E., et al. (författare)
  • Optimizing ion-cyclotron resonance frequency heating for ITER : dedicated JET experiments
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 53:12, s. 124019-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.
  •  
43.
  •  
44.
  •  
45.
  • Mantsinen, M. J., et al. (författare)
  • Bulk Ion Heating with ICRF Waves in Tokamaks
  • 2015
  • Ingår i: RADIOFREQUENCY POWER IN PLASMAS. - : American Institute of Physics (AIP). - 9780735413368
  • Konferensbidrag (refereegranskat)abstract
    • Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without He-3 minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with He-3 minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T-i from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central He-3 ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/L-Ti of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the He-3 concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.
  •  
46.
  • Nocente, M., et al. (författare)
  • Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D-He-3 plasmas with the 3-ion radio-frequency heating scenario
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dedicated experiments to generate energetic D ions and D-(3) He fusion-born alpha particles were performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Using the 3-ion D-(D-NBI)-(3) He radio frequency (RF) heating scenario, deuterium ions from neutral beam injection (NBI) were accelerated in the core of mixed D-(3) He plasmas to higher energies with ion cyclotron resonance frequency (ICRF) waves, in turn leading to a core-localized source of alpha particles. The fast-ion distribution of RF-accelerated D-NBI ions was controlled by varying the ICRF and NBI power (P-ICRF approximate to 4-6 MW, P-NBI approximate to 3-20 MW), resulting in rather high D-D neutron (approximate to 1x10(16) s(-1)) and D-(3) He alpha rates (approximate to 2x10(16) s(-1)) at moderate input heating power. Theory and TRANSP analysis shows that large populations of co-passing MeV-range D ions were generated using the D-(D-NBI)-(3) He 3-ion ICRF scenario. This important result is corroborated by several experimental observations, in particular gamma-ray measurements. The developed experimental scenario at JET provides unique conditions for probing several aspects of future burning plasmas, such as the contribution from MeV range ions to global confinement, but without introducing tritium. Dominant fast-ion core electron heating with T-i approximate to T-e and a rich variety of fast-ion driven Alfven eigenmodes (AEs) were observed in these D-(3) He plasmas. The observed AE activities do not have a detrimental effect on the thermal confinement and, in some cases, may be driven by the fusion born alpha particles. A strong continuous increase in neutron rate was observed during long-period sawteeth (>1 s), accompanied by the observation of reversed shear AEs, which implies that a non monotonic q profile was systematically developed in these plasmas, sustained by the large fast-ion populations generated by the 3-ion ICRF scenario.
  •  
47.
  •  
48.
  • Biel, W., et al. (författare)
  • Diagnostics for plasma control - : From ITER to DEMO
  • 2019
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 146:A, s. 465-472
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed. Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).
  •  
49.
  • Kiptily, V. G., et al. (författare)
  • Fusion Alpha-Particle Diagnostics for DT Experiments on the Joint European Torus
  • 2014
  • Ingår i: FUSION REACTOR DIAGNOSTICS. - : AIP Publishing LLC. ; , s. 87-92
  • Konferensbidrag (refereegranskat)abstract
    • JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of alpha-particles in DT operation. The direct measurements of alphas are very difficult and alpha-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the alpha-particle source and its evolution in space and time, alpha-particle energy distribution, and alpha-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for alpha-particle measurements, and what options exist for keeping the essential alpha-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, alpha-particle diagnostics for ITER are discussed.
  •  
50.
  • Lamalle, P. U., et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 46:2, s. 391-400
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on ITER-relevant ion cyclotron resonance frequency (ICRF) physics investigated on JET in 2003 and early 2004. Minority heating of helium three in hydrogen plasmas-(He-3)H-was systematically explored by varying the 3 He concentration and the toroidal phasing of the antenna arrays. The best heating performance (a maximum electron temperature of 6.2 keV with 5 MW of ICRF power) was obtained with a preferential wave launch in the direction of the plasma current. A clear experimental demonstration was made of the sharp and reproducible transition to the mode conversion heating regime when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen plasmas-(D)H-was also investigated but was found inaccessible because this scenario is too sensitive to impurity ions with Z/A = 1/2 such as C6+, small amounts of which directly lead into the mode conversion regime. Minority heating of up to 3% of tritium in deuterium plasmas was systematically investigated during the JET trace tritium experimental campaign (TTE). This required operating JET at its highest possible magnetic field (3.9 to 4 T) and the ICRF system at its lowest frequency (23 MHz). The interest of this scenario for ICRF heating at these low concentrations and its efficiency at boosting the suprathermal neutron yield were confirmed, and the measured neutron and gammay ray spectra permit interesting comparisons with advanced ICRF code simulations. Investigations of finite Larmor radius effects on the RF-induced high-energy tails during second harmonic (omega = 2 omega(c)) heating of a hydrogen minority in D plasmas clearly demonstrated a strong decrease in the RF diffusion coefficient at proton energies similar to 1 MeV in agreement with theoretical expectations. Fast wave heating and current drive experiments in deuterium plasmas showed effective direct electron heating with dipole phasing of the antennas, but only small changes of the central plasma current density were observed with the directive phasings, in particular at low single pass damping. New investigations of the heating efficiency of ICRF antennas confirmed its strong dependence on the parallel wavenumber spectrum. Advances in topics of a more technological nature are also summarized: ELM studies using fast RF measurements, the successful experimental demonstration of a new ELM-tolerant antenna matching scheme and technical enhancements planned on the JET ICRF system for 2006, they being equally strongly driven by the preparation for ITER.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 151

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy