SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tolmachev Vladimir) "

Sökning: WFRF:(Tolmachev Vladimir)

  • Resultat 11-20 av 489
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Preclinical Evaluation of Tc-99m-ZHER2:41071, a Second-Generation Affibody-Based HER2-Visualizing Imaging Probe with a Low Renal Uptake
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [Tc-99m]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [Tc-99m]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [Tc-99m]Tc-ZHER2:V2 and [Tc-99m]Tc-ZHER2:2395. [Tc-99m]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 +/- 2 pM. The renal uptake for [Tc-99m]Tc-ZHER2:41071 and [Tc-99m]Tc-ZHER2:V2 was 25-30 fold lower when compared with [Tc-99m]Tc-ZHER2:2395. The uptake in tumour and kidney for [Tc-99m]Tc-ZHER2:41071 and [Tc-99m]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with Tc-99m using a GGGC chelator. The new probe, [Tc-99m]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [Tc-99m]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.
  •  
13.
  • Tolmachev, Vladimir, et al. (författare)
  • Targeted nuclear medicine. Seek and destroy
  • 2022
  • Ingår i: Russian Chemical Reviews. - : IOP Publishing. - 0036-021X .- 1468-4837. ; 91:3
  • Forskningsöversikt (refereegranskat)abstract
    • The targeted delivery of radionuclides to tumours holds great promise for diagnosis and treatment of malignant neoplasms. The development of scaffold proteins has significantly simplified the design of targeting agents with desirable properties. This review comprehensively describes the key aspects of the design of radionuclide compounds, including classification of radionuclides, methodology for their attachment to targeting agents and characteristics of these agents that affect their behaviour in the body. Various targeting molecules are compared in terms of their ability to specifically find malignant foci in the body. The most recent achievements of cancer theranostics that aim at increasing the selectivity of antitumour effect are described, such as the fusion of targeting scaffold proteins with the albumin-binding domain and pretargeting. Special attention is paid to the creation of targeted radionanomaterials. Advantages and disadvantages of different strategies are analyzed and approaches for improving the delivery to tumours and for minimizing the undesirable impact on healthy organs and tissues are proposed. Particular emphasis is placed on the results of studies published in 2020 ?? 2021 that have not yet been covered by reviews.
  •  
14.
  • Vorobyeva, Anzhelika, et al. (författare)
  • Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors
  • 2018
  • Ingår i: Contrast Media & Molecular Imaging. - : WILEY-HINDAWI. - 1555-4309 .- 1555-4317.
  • Tidskriftsartikel (refereegranskat)abstract
    • High expression of human epidermal growth factor receptor 2 (HER2) in breast and gastroesophageal carcinomas is a predictive biomarker for treatment using HER2-targeted therapeutics (antibodies trastuzumab and pertuzumab, antibody-drug conjugate trastuzumab DM1, and tyrosine kinase inhibitor lapatinib). Radionuclide molecular imaging of HER2 expression might permit stratification of patients for HER2-targeting therapies. In this study, we evaluated a new HER2-imaging probe based on the designed ankyrin repeat protein (DARPin) 9_29. DARPin 9_29 was labeled with iodine-125 by direct radioiodination and with [Tc-99m] Tc(CO)(3) using the C-terminal hexahistidine tag. DARPin 9_29 preserved high specificity and affinity of binding to HER2-expressing cells after labeling. Uptake of [I-125] I-DARPin 9_29 and [Tc-99m] Tc(CO)(3)-DARPin 9_29 in HER2-positive SKOV-3 xenografts in mice at 6 h after injection was 3.4 +/- 0.7 % ID/g and 2.9 +/- 0.7 % ID/g, respectively. This was significantly (p < 0.00005) higher than the uptake of the same probes in HER2-negative Ramos lymphoma xenografts, 0.22 +/- 0.09 % ID/g and 0.30 +/- 0.05 % ID/g, respectively. Retention of [I-125] I-DARPin 9_29 in the lung, liver, spleen, and kidneys was appreciably lower compared with [Tc-99m] Tc(CO)(3)-DARPin 9_29, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by SPECT/CT imaging. In conclusion, radioiodine is a preferable label for DARPin 9_29.
  •  
15.
  • Vorobyeva, Anzhelika, et al. (författare)
  • Optimal composition and position of histidine-containing tags improves biodistribution of Tc-99m-labeled DARP in G3
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARP in G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)(3)) of histidine-containing tags would influence the biodistribution of [Tc-99m]Tc(CO)(3)-labeled DARP in G3. To test the hypothesis, G3 variants containing tags at N-terminus (H-6-G3 and (HE)(3)-G3) or at C-terminus (G3-H-6 and G3-(HE)(3)) were labeled with [Tc-99m]Tc(CO)(3). Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [Tc-99m]Tc(CO)(3)-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.
  •  
16.
  • Abouzayed, Ayman, et al. (författare)
  • 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry
  • 2023
  • Ingår i: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that Lu-177-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy.Methods: BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [Lu-177]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [Lu-177]Lu-PSMA-617 was simultaneously evaluated for comparison.Results: BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [Lu-177]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities K-D1 = 3.8 nM and K-D2 = 25 nM. The half-maximal inhibitory concentration for Lu-nat-BQ7876 was 59 nM that is equal to 61 nM for Lu-nat-PSMA-617. Cellular processing of [Lu-177]Lu-BQ7876 was accompanied by slow internalization. [Lu-177]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 +/- 3%ID/g) did not differ significantly from tumor uptake (9 +/- 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen.Discussion: Biodistribution studies in mice demonstrated that targeting properties of [Lu-177]Lu-BQ7876 are not inferior to properties of [Lu-177]Lu-PSMA-617, but do not offer any decisive advantages.
  •  
17.
  • Abouzayed, Ayman, et al. (författare)
  • Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics
  • 2023
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly(11) with Sar(11) in the peptidic [D-Phe(6),Leu(13)-NHEt,des-Met(14)]BBN(6-14) chain stabilized the [Tc-99m]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG(2)-(Sar(11))RM26 (AU-RM26-M1), after Gly(11) to Sar(11)-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [In-111]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [In-111]In-DOTAGA-PEG(2)-RM26. In vitro, the cell uptake of [In-111]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [In-111]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [In-111]In-AU-RM26-M1). [In-111]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 & PLUSMN; 8% intact) than unmodified [In-111]In-DOTAGA-PEG(2)-RM26 (69 & PLUSMN; 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar(11)-compound (91 & PLUSMN; 2% intact; p > 0.05). In vivo, [In-111]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 & PLUSMN; 0.7%IA/g vs. 0.9 & PLUSMN; 0.6%IA/g in blocked mice) and pancreas (2.2 & PLUSMN; 0.6%IA/g vs. 0.3 & PLUSMN; 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [In-111]In-AU-RM26-M1 was higher than for [In-111]In-DOTAGA-PEG(2)-RM26 (at 4 h pi, 5.7 & PLUSMN; 1.8%IA/g vs. 3 & PLUSMN; 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [In-111]In-AU-RM26-M1 SPECT/CT. The Gly(11) to Sar(11)-substitution stabilized [In-111]In-DOTAGA-PEG(2)-(Sar(11))RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.
  •  
18.
  • Abouzayed, Ayman, et al. (författare)
  • Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923 .- 1999-4923. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of In-nat-DOTA-ABD-RM26 in the presence of human serum albumin was 49 +/- 5 nM. [In-111]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.
  •  
19.
  • Abouzayed, Ayman, et al. (författare)
  • Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer
  • 2019
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923 .- 1999-4923. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) are overexpressed in most prostate cancers. GRPR expression is higher in early stages while PSMA expression increases with progression. The possibility of targeting both markers with a single theranostics radiotracer could improve patient management. Three GRPR/PSMA-targeting bispecific heterodimers (urea derivative PSMA-617 and bombesin-based antagonist RM26 linked via X-triazolyl-Tyr-PEG2, X = PEG2 (BO530), (CH2)(8) (BO535), none (BO536)) were synthesized by solid-phase peptide synthesis. Peptides were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity for all heterodimers was studied in PC-3 (GRPR-positive) and LNCaP (PSMA-positive) xenografts. [I-125]I-BO530 was evaluated in PC-3pip (GRPR/PSMA-positive) xenografts. Micro single-photon emission computed tomography/computed tomography (microSPECT/CT) scans were acquired. The heterodimers were radiolabeled with high radiochemical yields, bound specifically to both targets, and demonstrated high degree of activity retention in PC-3pip cells. Only [I-125]I-BO530 demonstrated in vivo specificity to both targets. A biodistribution study of [I-125]I-BO530 in PC-3pip xenografted mice showed high tumor activity uptake (30%-35%ID/g at 3 h post injection (pi)). Activity uptake in tumors was stable and exceeded all other organs 24 h pi. Activity uptake decreased only two-fold 72 h pi. The GRPR/PSMA-targeting heterodimer [I-125]I-BO530 is a promising agent for theranostics application in prostate cancer.
  •  
20.
  • Ahlgren, Sara, et al. (författare)
  • Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules
  • 2008
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 19:1, s. 235-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 489
Typ av publikation
tidskriftsartikel (405)
doktorsavhandling (22)
annan publikation (21)
forskningsöversikt (14)
recension (14)
konferensbidrag (9)
visa fler...
bokkapitel (4)
visa färre...
Typ av innehåll
refereegranskat (357)
övrigt vetenskapligt/konstnärligt (132)
Författare/redaktör
Tolmachev, Vladimir (478)
Orlova, Anna (212)
Orlova, Anna, 1960- (100)
Lundqvist, Hans (94)
Mitran, Bogdan (80)
Vorobyeva, Anzhelika (76)
visa fler...
Altai, Mohamed (67)
Carlsson, Jörgen (62)
Löfblom, John (55)
Garousi, Javad (55)
Ståhl, Stefan (54)
Sandström, Mattias (48)
Eriksson Karlström, ... (44)
Rinne, Sara S. (42)
Honarvar, Hadis (40)
Sjöberg, Stefan (33)
Sörensen, Jens (32)
Oroujeni, Maryam, Ph ... (31)
Varasteh, Zohreh (31)
Feldwisch, Joachim (28)
Gedda, Lars (27)
Gräslund, Torbjörn (27)
Frejd, Fredrik Y. (27)
Lubberink, Mark (27)
Xu, Tianqi (27)
Rosestedt, Maria (24)
Andersson, Ken G. (24)
Sundin, Anders (22)
Bruskin, Alexander (22)
Strand, Joanna (21)
Abouzayed, Ayman (20)
Wennborg, Anders (20)
Abrahmsén, Lars (20)
Malmberg, Jennie (20)
Rosenström, Ulrika (19)
Westerlund, Kristina (18)
Larhed, Mats (18)
Lindbo, Sarah (18)
Velikyan, Irina (17)
Rosik, Daniel (16)
Selvaraju, Ram Kumar (16)
Schulga, Alexey (16)
Liu, Yongsheng (16)
Wållberg, Helena (14)
Perols, Anna (14)
Konovalova, Elena (14)
Chernov, Vladimir (13)
Lindman, Henrik (13)
Ding, Haozhong (13)
Buijs, Jos (13)
visa färre...
Lärosäte
Uppsala universitet (469)
Kungliga Tekniska Högskolan (175)
Karolinska Institutet (11)
Lunds universitet (9)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (478)
Odefinierat språk (9)
Svenska (1)
Ryska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (248)
Naturvetenskap (80)
Teknik (26)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy