SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tzourio C) "

Sökning: WFRF:(Tzourio C)

  • Resultat 21-30 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  •  
22.
  • Lambert, J-C, et al. (författare)
  • Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease
  • 2013
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 18:4, s. 461-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n = 2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43-1.96); P=1.1 x 10(-10)). We finally searched for association between SNPs within the FRMD4A locus and A beta plasma concentrations in three independent non-demented populations (n = 2579). We reported that polymorphisms were associated with plasma A beta 42/A beta 40 ratio (best signal, P=5.4 x 10(-7)). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.
  •  
23.
  •  
24.
  • Chibnik, L. B., et al. (författare)
  • Trends in the incidence of dementia: design and methods in the Alzheimer Cohorts Consortium
  • 2017
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 32:10, s. 931-938
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have reported a decline in incidence of dementia which may have large implications for the projected burden of disease, and provide important guidance to preventive efforts. However, reports are conflicting or inconclusive with regard to the impact of gender and education with underlying causes of a presumed declining trend remaining largely unidentified. The Alzheimer Cohorts Consortium aggregates data from nine international population-based cohorts to determine changes in the incidence of dementia since 1990. We will employ Poisson regression models to calculate incidence rates in each cohort and Cox proportional hazard regression to compare 5-year cumulative hazards across study-specific epochs. Finally, we will meta-analyse changes per decade across cohorts, and repeat all analysis stratified by sex, education and APOE genotype. In all cohorts combined, there are data on almost 69,000 people at risk of dementia with the range of follow-up years between 2 and 27. The average age at baseline is similar across cohorts ranging between 72 and 77. Uniting a wide range of disease-specific and methodological expertise in research teams, the first analyses within the Alzheimer Cohorts Consortium are underway to tackle outstanding challenges in the assessment of time-trends in dementia occurrence.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Bethlehem, RAI, et al. (författare)
  • Brain charts for the human lifespan
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:79057906, s. 525-
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 54

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy