SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urrutia Cordero Pablo) "

Sökning: WFRF:(Urrutia Cordero Pablo)

  • Resultat 11-20 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ger, Kemal Ali, et al. (författare)
  • The interaction between cyanobacteria and zooplankton in a more eutrophic world
  • 2016
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883. ; 54, s. 128-144
  • Forskningsöversikt (refereegranskat)abstract
    • As blooms of cyanobacteria expand and intensify in freshwater systems globally, there is increasing interest in their ecological effects. In addition to being public health hazards, cyanobacteria have long been considered a poor quality food for key zooplankton grazers that link phytoplankton to higher trophic levels. While past laboratory studies have found negative effects of nutritional constraints and defensive traits (i.e., toxicity and colonial or filamentous morphology) on the fitness of large generalist grazers (i.e., Daphnia), cyanobacterial blooms often co-exist with high biomass of small-bodied zooplankton in nature. Indeed, recent studies highlight the remarkable diversity and flexibility in zooplankton responses to cyanobacterial prey. Reviewed here are results from a wide range of laboratory and field experiments examining the interaction of cyanobacteria and a diverse zooplankton taxa including cladocerans, copepods, and heterotrophic protists from temperate to tropical freshwater systems. This synthesis shows that longer exposure to cyanobacteria can shift zooplankton communities toward better-adapted species, select for more tolerant genotypes within a species, and induce traits within the lifetime of individual zooplankton. In turn, the function of bloom-dominated plankton ecosystems, the coupling between primary producers and grazers, the stability of blooms, and the potential to use top down biomanipulation for controlling cyanobacteria depend largely on the species, abundance, and traits of interacting cyanobacteria and zooplankton. Understanding the drivers and consequences of zooplankton traits, such as physiological detoxification and selective vs. generalist grazing behavior, are therefore of major importance for future studies. Ultimately, co-evolutionary dynamics between cyanobacteria and their grazers may emerge as a critical regulator of blooms.
  •  
12.
  • Hansson, Lars Anders, et al. (författare)
  • Different climate scenarios alter dominance patterns among aquatic primary producers in temperate systems
  • 2020
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 65:10, s. 2328-2336
  • Tidskriftsartikel (refereegranskat)abstract
    • In a future climate change perspective, the interactions among different life-forms of primary producers will likely be altered, leading to changes in the relative dominance among macrophytes, filamentous, and planktonic algae. In order to improve the possibilities to forecast future ecosystem services and function, we therefore conducted a long-term mesocosm study where primary producers were exposed to different climate scenarios, including both a mean increase in temperature (4 degrees C) and a similar energy input, but delivered as "heat waves" (fluctuations 0-8 degrees C above ambient). We show that in shallow systems, future climate change scenarios will likely lead to higher total macrophyte biomasses, but also to considerable alterations in the macrophyte community composition. The biomass of filamentous algae (Cladophora) showed no significant difference among treatments, although effect size analyses identified a slight increase at heated conditions. We also show that future climate change will not necessarily lead to more phytoplankton blooms, although a considerable alteration in phytoplankton community composition is to be expected, with a dominance of cyanobacteria and Cryptophytes, whereas Chlorophyceae and diatoms will likely play a less pronounced role than at present. In a broader context, we conclude that the total biomass of macrophytes will likely increase in shallow areas, whereas phytoplankton may not show any strong changes in biomass in a future climate change scenario. Instead, the major changes among primary producers will likely be mirrored in a considerably different species composition than at present.
  •  
13.
  • Hebert, Marie-Pier, et al. (författare)
  • Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:1, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.
  •  
14.
  • Hintz, William D., et al. (författare)
  • Current water quality guidelines across North America and Europe do not protect lakes from salinization
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
  •  
15.
  • Klatt, Björn K., et al. (författare)
  • A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather
  • 2022
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic cascades in the aquatic environment constitute important mechanisms for improving water quality. However, how the presence or non-presence of these trophic cascades may affect interactions across the aquatic–terrestrial interface remains poorly investigated. Pollinators such as bees may be especially vulnerable to changes in water resource quality induced by trophic cascades. Understanding how aquatic trophic cascades affect bees and pollination becomes even more pressing under ongoing climate change due to increased physiological demands for water under extreme weather events. In a novel field experiment combining terrestrial and aquatic mesocosms, we aimed to test how changes in water quality induced by an aquatic trophic cascade affected foraging and growth of bumblebee colonies as well as foraging of solitary bees. While we expected fish predation to reduce top–down control of zooplankton on phytoplankton and thereby, indirectly, induce increased growth of toxic cyanobacteria, we instead found the trophic cascade to induce the formation of algal surface mats that bumblebees used to access water under a severe heat wave and drought. This access to water was associated with higher bumblebee colony reproductive success, growth and weight compared to control colonies with no trophic cascade induced (and hence no algal surface mats). We also found marginal but non-significant effects on oilseed rape yield, but surprisingly with higher yields in the control treatment where bumblebees could not access water. Our results provide new insights on how aquatic trophic cascades can lead to unpredicted ecological interactions across the aquatic–terrestrial interface facilitated by climate change. Our study highlights the importance of water for the fitness of terrestrial ecosystem service providers under altered environmental conditions.
  •  
16.
  • Li, Zhongqiang, et al. (författare)
  • Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 23:1, s. 108-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity during the next hundred years, which may accelerate shifts in hydrological regimes and submerged macrophyte composition in freshwater ecosystems. Since macrophytes are profound components of aquatic systems, predicting their response to extreme climatic events is crucial for implementation of climate change adaptation strategies. We therefore performed an experiment in 24 outdoor enclosures (400 L) separating the impact of a 4 °C increase in mean temperature with the same increase, that is the same total amount of energy input, but resembling a climate scenario with extreme variability, oscillating between 0 °C and 8 °C above present conditions. We show that at the moderate nutrient conditions provided in our study, neither an increase in mean temperature nor heat waves lead to a shift from a plant-dominated to an algal-dominated system. Instead, we show that species-specific responses to climate change among submerged macrophytes may critically influence species composition and thereby ecosystem functioning. Our results also imply that more fluctuating temperatures affect the number of flowers produced per plant leading to less sexual reproduction. Our findings therefore suggest that predicted alterations in climate regimes may influence both plant interactions and reproductive strategies, which have the potential to inflict changes in biodiversity, community structure and ecosystem functioning.
  •  
17.
  • Li, Zhongqiang, et al. (författare)
  • Heat Waves Alter Macrophyte-Derived Detrital Nutrients Release under Future Climate Warming Scenarios
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:8, s. 5272-5281
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to a rise in global air and water mean temperatures, extreme climate events such as heat waves are increasing in frequency, intensity, and duration in many regions of the globe. Developing a mechanistic understanding of the impacts of heat waves on key ecosystem processes and how they differ from just an increase in mean temperatures is therefore of utmost importance for adaptive management against effects of global change. However, little is known about the impact of extreme events on freshwater ecosystem processes, particularly the decomposition of macrophyte detritus. We performed a mesocosm experiment to evaluate the impact of warming and heat waves on macrophyte detrital decomposition, applied as a fixed increment (+4 °C) above ambient and a fluctuating treatment with similar energy input, ranging from 0 to 6 °C above ambient (i.e., simulating heat waves). We showed that both warming and heat waves significantly accelerate dry mass loss of the detritus and carbon (C) release but found no significant differences between the two heated treatments on the effects on detritus dry mass loss and C release amount. This suggests that moderate warming indirectly enhanced macrophyte detritus dry mass loss and C release mainly by the amount of energy input rather than by the way in which warming was provided (i.e., by a fixed increment or in heat waves). However, we found significantly different amounts of nitrogen (N) and phosphorus (P) released between the two warming treatments, and there was an asymmetric response of N and P release patterns to the two warming treatments, possibly due to species-specific responses of decomposers to short-term temperature fluctuations and litter quality. Our results conclude that future climate scenarios can significantly accelerate organic matter decomposition and C, N, and P release from decaying macrophytes, and more importantly, there are asymmetric alterations in macrophyte-derived detrital N and P release dynamic. Therefore, future climate change scenarios could lead to alterations in N/P ratios in the water column via macrophyte decomposition processes and ultimately affect the structure and function of aquatic ecosystems, especially in the plankton community.
  •  
18.
  • Mantzouki, Evanthia, et al. (författare)
  • A European Multi Lake Survey dataset of environmental variables , phytoplankton pigments and cyanotoxins
  • 2018
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 5:October, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.
  •  
19.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
20.
  • Urrutia Cordero, Pablo, et al. (författare)
  • Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic-€“pelagic interface
  • 2020
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 101:7, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to a rise in mean air and water temperatures, more frequent and intense extreme climate events (such as heat waves) have been recorded around the globe during the past decades. These environmental changes are projected to intensify further in the future, and we still know little about how they will affect ecological processes driving harmful cyanobacterial bloom formation. Therefore, we conducted a long-term experiment in 400-L shallow freshwater mesocosms, where we evaluated the effects of a constant +4°C increase in mean water temperatures and compared it with a fluctuating warming scenario ranging from 0 to +8°C (i.e., including heat waves) but with the same +4°C long-term elevation in mean water temperatures. We focused on investigating not only warming effects on cyanobacterial pelagic dynamics (phenology and biomass levels), but also on their recruitment from sediments—which are a fundamental part of their life history for which the response to warming remains largely unexplored. Our results demonstrate that (1) a warmer environment not only induces a seasonal advancement and boosts biomass levels of specific cyanobacterial species in the pelagic environment, but also increases their recruitment rates from the sediments, and (2) these species-specific benthic and pelagic processes respond differently depending on whether climate warming is expressed only as an increase in mean water temperatures or, in addition, through an increased warming variability (including heat waves). These results are important because they show, for the first time, that climate warming can affect cyanobacterial dynamics at different life-history stages, all the way from benthic recruitment up to their establishment in the pelagic community. Furthermore, it also highlights that both cyanobacterial benthic recruitment and pelagic biomass dynamics may be different as a result of changes in the variability of warming conditions. We argue that these findings are a critical first step to further our understanding of the relative importance of increased recruitment rates for harmful cyanobacterial bloom formation under different climate change scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 29
Typ av publikation
tidskriftsartikel (24)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (29)
Författare/redaktör
Urrutia-Cordero, Pab ... (27)
Hansson, Lars-Anders (18)
Zhang, Huan (7)
Ekvall, Mattias K. (7)
Rusak, James A. (6)
Striebel, Maren (6)
visa fler...
Langenheder, Silke (6)
Laudon, Hjalmar (5)
Lundgren, Maria (5)
Grossart, Hans-Peter (5)
Weyhenmeyer, Gesa A. (4)
Pierson, Don (4)
Arnott, Shelley E. (4)
Canedo-Arguelles, Mi ... (4)
Straile, Dietmar (3)
Hylander, Samuel (3)
Symons, Celia C. (3)
Melles, Stephanie J. (3)
Beisner, Beatrix E. (3)
Hebert, Marie-Pier (3)
Brentrup, Jennifer A ... (3)
Lind, Lovisa (3)
Gray, Derek K. (3)
Hintz, William D. (3)
McClymont, Alexandra (3)
Relyea, Rick A. (3)
Searle, Catherine L. (3)
Astorg, Louis (3)
Baker, Henry K. (3)
Ersoy, Zeynep (3)
Espinosa, Carmen (3)
Giorgio, Angelina T. (3)
Hassal, Emily (3)
Huynh, Mercedes (3)
Jonasen, Kacie L. (3)
Langvall, Ola (3)
Proia, Lorenzo (3)
Schuler, Matthew S. (3)
Shurin, Jonathan B. (3)
Steiner, Christopher ... (3)
Thibodeau, Simon (3)
Vendrell-Puigmitja, ... (3)
Derry, Alison M. (3)
Bravo, Andrea Garcia (3)
Buck, Moritz (3)
Colom-Montero, Willi ... (3)
Carey, Cayelan C. (3)
Chaguaceda, Fernando (3)
Beklioğlu, Meryem (3)
Lurling, Miquel (3)
visa färre...
Lärosäte
Lunds universitet (26)
Uppsala universitet (21)
Sveriges Lantbruksuniversitet (7)
Linnéuniversitetet (5)
Karlstads universitet (3)
Umeå universitet (1)
visa fler...
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy