SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vaag Allan) "

Search: WFRF:(Vaag Allan)

  • Result 41-50 of 102
Sort/group result
   
EnumerationReferenceCoverFind
41.
  • Hansen, Ninna Schiøler, et al. (author)
  • Fetal hyperglycemia changes human preadipocyte function in adult life
  • 2017
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 102:4, s. 1141-1150
  • Journal article (peer-reviewed)abstract
    • Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures: First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results: We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
  •  
42.
  • Hatem, Gad, et al. (author)
  • Mapping the cord blood transcriptome of pregnancies affected by early maternal anemia to identify signatures of fetal programming
  • 2022
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 107:5, s. 1303-1316
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mother and children. Offspring of women with EP anemia often have low birth-weight, the latter being a risk factor for cardiometabolic diseases including type 2 diabetes (T2D) later in life. Mechanisms underlying developmental programming of adult cardiometabolic disease include epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth.METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP-anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEG) in UCB exposed to maternal EP-anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function.RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming which included the birth-weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL which potentially influence beta-cell development. Insulin levels were lower in EP anemia exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of EP anemic mothers.CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.
  •  
43.
  • Haugaard, S B, et al. (author)
  • Sex and muscle structural lipids in obese subjects - an impact on insulin action?
  • 2008
  • In: European Journal of Clinical Investigation. - : Wiley. - 0014-2972 .- 1365-2362. ; 38:7, s. 494-501
  • Journal article (peer-reviewed)abstract
    • Background Long-chain polyunsaturated fatty acid (LCPUFA) especially the n-3-FA of skeletal muscle phospholipids may facilitate insulin action, whereas saturated and trans-FA act oppositely. Community studies show that non-diabetic weight matched obese men and women display similar insulin resistance, despite the fact that an android fat distribution is detrimental to insulin action. The increased extramyocellular fat mass of obese women may act in a paracrine manner such that its release of free FA and cytokines may hamper in situ desaturation and elongation of FA in skeletal muscle phospholipids. Material and methods To test the hypothesis that obese women may display an inferior FA composition compared to obese men, the FA composition of skeletal muscle phospholipids was determined in vastus lateralis biopsies obtained from 12 non-diabetic obese women with a typical gynoid fat distribution, nine non-diabetic obese men with a typical android fat distribution and 12 (seven females) lean age matched healthy controls (body mass index 34.6 +/- 1.0 kg m(-2), 36.5 +/- 1.2 and 22.5 +/- 0.5; age 47 +/- 2 years, 51 +/- 3 and 49 +/- 2). Results Obese women displayed decreased LCPUFA n-3 and ratio of n-3/n-6 PUFA, whereas trans-FA and palmitic-FA (C16 : 0) were increased compared to obese men and controls (all Ps < 0.05). Plasma high-density lipoprotein cholesterol (HDL-C), triglycerides and a marker of insulin sensitivity were similar between obese women and men but impaired compared to controls (Ps < 0.05). Conclusions The data support the hypothesis that insulin resistant non-diabetic obese men display a more optimal skeletal muscle phospholipid FA composition than their female counterparts, which may be a mechanism to compensate the detrimental effect on insulin action of an android fat distribution.
  •  
44.
  • Haugaard, Steen B., et al. (author)
  • Skeletal muscle structural lipids improve during weight-maintenance after a very low calorie dietary intervention
  • 2009
  • In: Lipids in Health and Disease. - 1476-511X. ; 8
  • Journal article (peer-reviewed)abstract
    • Background: The objective was to investigate in a group of obese subjects the course in skeletal muscle phospholipid (SMPL) fatty acids (FA) during a 24-weeks weight maintenance program, which was preceded by a successful very low calorie dietary intervention (VLCD). Special focus was addressed to SMPL omega-3 FA, which is a lipid entity that influences insulin action. Methods: Nine obese subjects (BMI = 35.7 +/- 1.0 kg/m(2)), who had completed an 8 weeks VLCD (weight-loss = -9.7 +/- 1.6 kg, P < 0.001), had obtained skeletal muscle biopsies (vastus lateralis) before and after a dietician-guided 24-weeks weight-maintenance program (-1.2 +/- 1.5 kg, P = ns). SMPL FA composition was determined by gas liquid chromatography. During the preceding VLCD, insulin sensitivity (HOMA-IR) and glycemic control (HbA1c) improved but no change in SMPL omega-3 FA was observed. During the weight-maintenance program five subjects received the pancreas lipase inhibitor Orlistat 120 mg t.i.d. versus placebo. Results: HOMA-IR and HbA1c stabilized and SMPL total omega-3 FA, docosahexaenoic acid and ratio of n-3/n-6 polyunsaturated FA increased by 24% (P < 0.01), 35% (P < 0.02) and 26% (P < 0.01), respectively, whereas saturated and monounsaturated FA did not change. Plasma total-cholesterol and LDL-cholesterol, which decreased during the VLCD, reverted to pre-VLCD levels (P < 0.01). Orlistat therapy was associated with weight-loss (P < 0.05), trends for better glycemic control (P = 0.15) and greater increase in SMPL docosahexaenoic acid (P = 0.12) but similar reversal of plasma cholesterols compared to placebo. Conclusion: The data are consistent with the notion that greater SMPL omega-3 FA obtained during a weight-maintenance program may play a role for preserving insulin sensitivity and glycemic control being generated during a preceding VLCD.
  •  
45.
  •  
46.
  • Hjort, Line, et al. (author)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
47.
  • Hjort, Line, et al. (author)
  • Epigenetics of the non-coding RNA nc886 across blood, adipose tissue and skeletal muscle in offspring exposed to diabetes in pregnancy
  • 2024
  • In: Clinical Epigenetics. - 1868-7075. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Background: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. Methods: To identify DMRs, we employed the bump hunter method in samples from young (9–16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28–33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. Results: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring’s own adiposity. Conclusions: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.
  •  
48.
  • Hjort, Line, et al. (author)
  • Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children
  • 2018
  • In: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 3:17
  • Journal article (peer-reviewed)abstract
    • Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.
  •  
49.
  • Horikoshi, Momoko, et al. (author)
  • New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:1
  • Journal article (peer-reviewed)abstract
    • Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
  •  
50.
  • Huang, Xudong, et al. (author)
  • Down-regulation of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc gene expression by insulin in skeletal muscle is not associated with insulin resistance or type 2 diabetes.
  • 2002
  • In: Journal of Clinical Endocrinology and Metabolism. - 1945-7197. ; 87:1, s. 255-259
  • Journal article (peer-reviewed)abstract
    • To examine whether altered gene expression of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc is an inherited trait and is associated with muscle insulin resistance or type 2 diabetes, we measured mRNA levels of these genes by a relative quantitative RT-PCR method in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and 12 control subjects. Insulin-stimulated glucose uptake was decreased both in the diabetic and nondiabetic twin, compared with healthy control subjects (5.2 +/- 0.7 and 8.5 +/- 0.8 vs. 11.4 +/- 0.9 mg/kg x min(-1); P < 0.01 and P < 0.02, respectively). Basal mRNA levels of IRS-1, IRS-2, and Shc were similar in the diabetic and nondiabetic twins as well as in the control subjects. Insulin decreased mRNA expression of IRS-1 by 72% (from 0.75 +/- 0.06 to 0.21 +/- 0.04 relative units; P < 0.001), IRS-2 by 71% (from 0.55 +/- 0.10 to 0.16 +/- 0.08 relative units; P < 0.03), and Shc by 25% (from 0.95 +/- 0.04 to 0.71 +/- 0.04 relative units; P < 0.01) vs. baseline as demonstrated in the control subjects. The postclamp Shc mRNA level was slightly higher in the diabetic twins (P = 0.05) but similar in the nondiabetic twins, as compared with the control subjects, whereas postclamp IRS-1 and IRS-2 mRNA levels were similar between the study groups. There was an inverse correlation between postclamp Shc mRNA concentration and glucose uptake (r = -0.53, P = 0.01; n = 22) in the controls and nondiabetic twins. However, the decrease in Shc gene expression by insulin was not significantly different between the study groups. In conclusion, because insulin down-regulates IRS-1, IRS-2, and Shc gene expression in skeletal muscle in diabetic and nondiabetic monozygotic twins and control subjects to the same extent, it is unlikely that expression of these genes is an inherited trait or contributes to skeletal muscle insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 41-50 of 102
Type of publication
journal article (99)
research review (2)
conference paper (1)
Type of content
peer-reviewed (100)
other academic/artistic (2)
Author/Editor
Vaag, Allan (88)
Ling, Charlotte (38)
Groop, Leif (34)
Poulsen, Pernille (24)
Brøns, Charlotte (21)
Hansen, Torben (20)
show more...
Perfilyev, Alexander (19)
Pedersen, Oluf (15)
Gillberg, Linn (14)
Ribel-Madsen, Rasmus (14)
Nilsson, Emma (12)
Almgren, Peter (12)
Rönn, Tina (11)
Vaag, Allan A (11)
Hjort, Line (11)
Ahlqvist, Emma (10)
Volkov, Petr (10)
Lyssenko, Valeriya (9)
Hansson, Ola (8)
Garcia-Calzon, Sonia (7)
Grarup, Niels (6)
Eriksson, Karl-Fredr ... (6)
Broholm, Christa (6)
Jørgensen, Sine W. (6)
Storgaard, Heidi (6)
Tuomi, Tiinamaija (5)
Ridderstråle, Martin (5)
Franks, Paul W. (5)
Madsbad, Sten (5)
Laakso, Markku (5)
Olsson, Anders H (5)
Arora, Geeti (5)
Beck-Nielsen, Hennin ... (5)
Nilsson, Peter (4)
Kotova, Olga (4)
Stancáková, Alena (4)
Kuusisto, Johanna (4)
Pihlajamäki, Jussi (4)
Prasad, Rashmi B. (4)
Linneberg, Allan (4)
Orho-Melander, Marju (4)
Ribel-Madsen, R. (4)
Eliasson, Lena (4)
Gjesing, Anette Prio ... (4)
Tarnow, Lise (4)
Olsen, Michael H. (4)
Højlund, Kurt (4)
Scheele, Camilla (4)
Mortensen, Brynjulf (4)
Hansen, Ninna Schiøl ... (4)
show less...
University
Lund University (98)
Karolinska Institutet (10)
University of Gothenburg (5)
Uppsala University (5)
Mid Sweden University (2)
Umeå University (1)
show more...
Royal Institute of Technology (1)
Luleå University of Technology (1)
University of Skövde (1)
show less...
Language
English (102)
Research subject (UKÄ/SCB)
Medical and Health Sciences (99)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view