SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vaag Allan) "

Sökning: WFRF:(Vaag Allan)

  • Resultat 71-80 av 98
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
71.
  • Nilsson, Emma A, et al. (författare)
  • Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:9, s. 2962-2976
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
  •  
72.
  • Nilsson, Emma A, et al. (författare)
  • Genetic and Nongenetic Regulation of CAPN10 mRNA Expression in Skeletal Muscle.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 3015-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene encoding calpain-10 (CAPN10) has been identified as a candidate gene for type 2 diabetes. Our aim was to study the impact of genetic (heritability and polymorphisms) and nongenetic (insulin, free fatty acids, and age) factors on CAPN10 mRNA expression in skeletal muscle using two different study designs. Muscle biopsies were obtained before and after hyperinsulinemic-euglycemic clamps from 166 young and elderly monozygotic and dizygotic twins as well as from 15 subjects with normal (NGT) or impaired glucose tolerance (IGT) exposed to an Intralipid infusion. We found hereditary effects on both basal and insulin-exposed CAPN10 mRNA expression. Carriers of the type 2 diabetes–associated single nucleotide polymorphism (SNP)-43 G/G genotype had reduced CAPN10 mRNA levels compared with subjects carrying the SNP-43 A-allele. Age had no significant influence on CAPN10 mRNA levels. Insulin had no significant effect on CAPN10 mRNA levels, neither in the twins nor in the basal state of the Intralipid study. However, after a 24-h infusion of Intralipid, we noted a significant increase in CAPN10 mRNA in response to insulin in subjects with NGT but not in subjects with IGT. In conclusion, we provide evidence that mRNA expression of CAPN10 in skeletal muscle is under genetic control. Glucose-tolerant but not glucose-intolerant individuals upregulate their CAPN10 mRNA levels in response to prolonged exposure to fat.
  •  
73.
  • Nilsson, Emma, et al. (författare)
  • Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:10, s. 2402-2418
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of type 2 diabetes (T2D) is increasing worldwide, but current treatments have limitations. miRNAs may play a key role in the development of T2D and can be targets for novel therapies. Here, we examined whether T2D is associated with altered expression and DNA methylation of miRNAs using adipose tissue from 14 monozygotic twin pairs discordant for T2D. Four members each of the miR-30 and let-7-families were downregulated in adipose tissue of subjects with T2D versus control subjects, which was confirmed in an independent T2D case-control cohort. Further, DNA methylation of five CpG sites annotated to gene promoters of differentially expressed miRNAs, including miR-30a and let-7a-3, was increased in T2D versus control subjects. Luciferase experiments showed that increased DNA methylation of the miR-30a promoter reduced its transcription in vitro. Silencing of miR-30 in adipocytes resulted in reduced glucose uptake and TBC1D4 phosphorylation; downregulation of genes involved in demethylation and carbohydrate/lipid/amino acid metabolism; and upregulation of immune system genes. In conclusion, T2D is associated with differential DNA methylation and expression of miRNAs in adipose tissue. Downregulation of the miR-30 family may lead to reduced glucose uptake and altered expression of key genes associated with T2D.
  •  
74.
  • Nilsson, Emma, et al. (författare)
  • Regulation of skeletal muscle PPAR delta mRNA expression in twins
  • 2007
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 584:3, s. 1011-1017
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors regulating the expression of genes involved in lipid and glucose metabolism in a complex and to some extent unknown manner. Our aim was to study the impact of different factors on PPAR delta mRNA expression in human skeletal muscle on one side, and the impact of PPAR delta mRNA expression on these factors, including glucose and lipid metabolism, aerobic capacity, fibre type composition and lipid profile, on the other side. PPAR delta mRNA levels were quantified by real-time PCR in muscle biopsies from 176 young and elderly monozygotic and dizygotic twins. Young twins had significantly increased PPAR delta mRNA levels compared with elderly twins. A 2 h hyperinsulinaemic euglycaemic clamp had no significant effect on PPAR delta mRNA levels. Biometric models were calculated for basal PPAR delta mRNA expression to estimate the degree of genetic versus environmental influence. In both young and elderly twins there was a substantial genetic component influencing basal PPAR delta mRNA levels. In a regression model, the muscle PPAR delta mRNA expression was correlated to birth weight, central adiposity and age. The level of PPAR delta mRNA was also positively correlated with markers for oxidative muscle fibres. However, in this apparently healthy study population, we found no correlations between PPAR delta mRNA expression and aerobic capacity, lipid profile or glucose and lipid metabolism. In conclusion, we provide evidence that mRNA expression of PPAR delta in human skeletal muscle is under genetic control but also influenced by factors such as age, birth weight and central adiposity.
  •  
75.
  • Olsson, Anders H, et al. (författare)
  • The expression of myosin heavy chain (MHC) genes in human skeletal muscle is related to metabolic characteristics involved in the pathogenesis of type 2 diabetes.
  • 2011
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192. ; 103, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes patients exhibit a reduction in oxidative muscle fibres and an increase in glycolytic muscle fibres. In this study, we investigated whether both genetic and non-genetic factors influence the mRNA expression levels of three myosin heavy chain (MHC) genes represented in different fibre types. Specifically, we examined the MHC7 (slow-twitch oxidative fibre), MHCIIa (fast-twitch oxidative fibre) and MHCIIx/d (fast-twitch glycolytic fibre) genes in human skeletal muscle. We further investigated the use of MHC mRNA expression as a proxy to determine fibre-type composition, as measured by traditional ATP staining. Two cohorts of age-matched Swedish men were studied to determine the relationship of muscle mRNA expression of MHC7, MHCIIa, and MHCIIx/d with muscle fibre composition. A classical twin approach, including young and elderly Danish twin pairs, was utilised to examine if differences in expression levels were due to genetic or environmental factors. Although MHCIIx/d mRNA expression correlated positively with the level of type IIx/d muscle fibres in the two cohorts (P<0.05), a relatively low magnitude of correlation suggests that mRNA does not fully correlate with fibre-type composition. Heritability estimates and genetic analysis suggest that the levels of MHC7, MHCIIa and MHCIIx/d expression are primarily under non-genetic influence, and MHCIIa indicated an age-related decline. PGC-1α exhibited a positive relationship with the expression of all three MHC genes (P<0.05); meanwhile, PGC-1β related positively with MHCIIa expression and negatively with MHCIIx/d expression (P<0.05). While MHCIIa expression related positively with insulin-stimulated glucose uptake (P<0.01), MHCIIx/d expression related negatively with insulin-stimulated glucose uptake (P<0.05). Our findings suggest that the expression levels of the MHC genes are associated with age and both PGC-1α and PGC-1β and indicate that the MHC genes may to some extent be used to determine fibre-type composition in human skeletal muscle.
  •  
76.
  • Parikh, Hemang M, et al. (författare)
  • Relationship between insulin sensitivity and gene expression in human skeletal muscle
  • 2021
  • Ingår i: BMC Endocrine Disorders. - : Springer Science and Business Media LLC. - 1472-6823. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Insulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood.METHODS: To explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR).RESULTS: We identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g. PPARGC1A.CONCLUSIONS: The muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g. SIRT2, and genes regulating autophagy and mTOR signaling, e.g. FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.
  •  
77.
  • Parikh, Hemang, et al. (författare)
  • Molecular correlates for maximal oxygen uptake (VO2max) and type 1 fibers.
  • 2008
  • Ingår i: American Journal of Physiology: Endocrinology and Metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; Apr 29, s. 1152-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Maximal oxygen uptake (VO2max) and the amount of type 1 fibers are interrelated but the underlying unifying molecular mechanisms are poorly understood. To explore these mechanisms we related gene expression profiles in skeletal muscle biopsies of 43 age-matched men from published datasets with VO2max and amount of type 1 fibers and replicated some of the findings in muscle biopsies from 154 young and elderly individuals using real-time PCR. We identified 66 probesets (genes or ESTs) positively and 83 probesets inversely correlated with VO2max and 171 probesets positively and 217 probesets inversely correlated with percentage of type 1 fibers in human skeletal muscle. Genes involved in oxidative phosphorylation (OXPHOS) showed high expression in individuals with high VO2max whereas the opposite was not the case in individuals with low VO2max. Instead, genes like AHNAK and BCL6 were associated with low VO2max. Also, expression of the OXPHOS genes NDUFB5 and ATP5C1 increased with exercise training and decreased with aging. In contrast, expression of AHNAK in skeletal muscle decreased with exercise training and increased with aging. Eleven genes (NDUFB4, COX5A, UQCRB, ATP5C1, ATP5G3, ETHE1, FABP3, ISCA1, MYST4, C9orf3 and PKIA) were positively correlated with both VO2max and percentage of type 1 fibers. VO2max closely reflects expression of OXPHOS genes, particularly of NDUFB5 and ATP5C1 in skeletal muscle suggesting good muscle fitness. In contrast, a high expression of AHNAK was associated with a low VO2max and poor muscle fitness. Key words: VO2max, Type 1 fibers, Aging.
  •  
78.
  • Parikh, Hemang, et al. (författare)
  • TXNIP regulates peripheral glucose metabolism in humans
  • 2007
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 4:5, s. 868-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Type 2 diabetes mellitus ( T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. Methods and Findings We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein ( TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. Conclusions TXNIP regulates both insulin-dependent and insulin- independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
  •  
79.
  • Ribel-Madsen, Rasmus, et al. (författare)
  • Impact of rs361072 in the Phosphoinositide 3-Kinase p110 beta Gene on Whole-Body Glucose Metabolism and Subunit Protein Expression in Skeletal Muscle
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:4, s. 1108-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110 beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. RESEARCH DESIGN AND METHODS-The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110 beta and p85 alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. RESULTS-While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: 16%, P-add = 0.004) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85 alpha:p110 beta protein ratio (P-add = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact with rs361072 on these traits. CONCLUSIONS-Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85 alpha:p110 beta ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found. Diabetes 59:1108-1112, 2010
  •  
80.
  • Ribel-Madsen, Rasmus, et al. (författare)
  • Retinol-Binding Protein 4 in Twins Regulatory Mechanisms and Impact of Circulating and Tissue Expression Levels on Insulin Secretion and Action
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 58:1, s. 54-60
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Retinol-binding protein (RBP) 4 is an adipokine of which plasma levels are elevated in obesity and type 2 diabetes. The aims of the study were to identify determinants of plasma RBP4 and RBP4 mRNA expression in subcutaneous adipose tissue (SAT) and skeletal muscle and to investigate the association between RBP4 and in vivo measures of glucose metabolism. RESEARCH DESIGN AND METHODS-The study population included 298 elderly twins (aged 62-83 years), with glucose tolerance ranging from normal to overt type 2 diabetes, and 178 young (aged 25-32 years) and elderly (aged 58-66 years) nondiabetic twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp, and beta-cell function was estimated from an intravenous glucose tolerance test. RESULTS-The influence of environmental versus genetic factors in the regulation of plasma RBP4 increased with age. Plasma RBP4 was elevated in type 2 diabetes and increased with duration of disease. Plasma RBP4 correlated inversely with peripheral, but not hepatic, insulin sensitivity. However, the association disappeared after correction for covariates, including plasma. adiponectin. Plasma retinol, and not RBP4, was inversely associated with insulin secretion. SAT RBP4 expression correlated positively with GLUT4 expression and inversely with glucose tolerance. Skeletal muscle RBP4 expression reflected intramuscular fat, and although it was suppressed by insulin, no association with insulin sensitivity was evident. RBP4 expression was not associated with circulatory RBP4. CONCLUSIONS-In conclusion, our data indicate that, RBP4 levels in plasma, skeletal muscle, and fat may be linked to insulin resistance and type 2 diabetes in a secondary and noncausal manner. Diabetes 58:54-60, 2009
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 71-80 av 98
Typ av publikation
tidskriftsartikel (95)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (96)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Vaag, Allan (85)
Ling, Charlotte (38)
Groop, Leif (34)
Poulsen, Pernille (24)
Brøns, Charlotte (20)
Perfilyev, Alexander (19)
visa fler...
Hansen, Torben (18)
Pedersen, Oluf (14)
Gillberg, Linn (14)
Ribel-Madsen, Rasmus (14)
Nilsson, Emma (12)
Almgren, Peter (12)
Rönn, Tina (11)
Vaag, Allan A (11)
Ahlqvist, Emma (10)
Volkov, Petr (10)
Hjort, Line (10)
Lyssenko, Valeriya (9)
Hansson, Ola (8)
Garcia-Calzon, Sonia (7)
Eriksson, Karl-Fredr ... (6)
Broholm, Christa (6)
Jørgensen, Sine W. (6)
Storgaard, Heidi (6)
Tuomi, Tiinamaija (5)
Ridderstråle, Martin (5)
Franks, Paul W. (5)
Madsbad, Sten (5)
Laakso, Markku (5)
Grarup, Niels (5)
Olsson, Anders H (5)
Arora, Geeti (5)
Beck-Nielsen, Hennin ... (5)
Parving, Hans Henrik (5)
Nilsson, Peter (4)
Kotova, Olga (4)
Stancáková, Alena (4)
Kuusisto, Johanna (4)
Pihlajamäki, Jussi (4)
Prasad, Rashmi B. (4)
Orho-Melander, Marju (4)
Ribel-Madsen, R. (4)
Eliasson, Lena (4)
Gjesing, Anette Prio ... (4)
Tarnow, Lise (4)
Scheele, Camilla (4)
Mortensen, Brynjulf (4)
Hansen, Ninna Schiøl ... (4)
Nielsen, Jens Steen (4)
Vestergaard, Peter (4)
visa färre...
Lärosäte
Lunds universitet (94)
Karolinska Institutet (9)
Göteborgs universitet (5)
Uppsala universitet (5)
Mittuniversitetet (2)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (98)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (95)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy