SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volkov Petr) "

Sökning: WFRF:(Volkov Petr)

  • Resultat 31-37 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Seiron, Peter, et al. (författare)
  • Transcriptional analysis of islets of Langerhans from organ donors of different ages
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.
  •  
32.
  • Singh, Pratibha, et al. (författare)
  • Reduced oxidized LDL in T2D plaques is associated with a greater statin usage but not with future cardiovascular events
  • 2020
  • Ingår i: Cardiovascular Diabetology. - : Springer Science and Business Media LLC. - 1475-2840. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Type 2 diabetes (T2D) patients are at a greater risk of cardiovascular events due to aggravated atherosclerosis. Oxidized LDL (oxLDL) has been shown to be increased in T2D plaques and suggested to contribute to plaque ruptures. Despite intensified statin treatment during the last decade the higher risk for events remains. Here, we explored if intensified statin treatment was associated with reduced oxLDL in T2D plaques and if oxLDL predicts cardiovascular events, to elucidate whether further plaque oxLDL reduction would be a promising therapeutic target. METHODS: Carotid plaque OxLDL levels and plasma lipoproteins were assessed in 200 patients. Plaque oxLDL was located by immunohistochemistry. Plaque cytokines, cells and scavenger receptor gene expression were quantified by Luminex, immunohistochemistry and RNA sequencing, respectively. Clinical information and events during follow-up were obtained from national registers. RESULTS: Plaque oxLDL levels correlated with markers of inflammatory activity, endothelial activation and plasma LDL cholesterol (r = 0.22-0.32 and p ≤ 0.01 for all). T2D individuals exhibited lower plaque levels of oxLDL, sLOX-1(a marker of endothelial activation) and plasma LDL cholesterol (p = 0.001, p = 0.006 and p = 0.009). No increased gene expression of scavenger receptors was identified in T2D plaques. The lower oxLDL content in T2D plaques was associated with a greater statin usage (p = 0.026). Supporting this, a linear regression model showed that statin treatment was the factor with the strongest association to plaque oxLDL and plasma LDL cholesterol (p < 0.001 for both). However, patients with T2D more frequently suffered from symptoms and yet plaque levels of oxLDL did not predict cardiovascular events in T2D (findings are summarized in Fig. 1a). CONCLUSIONS: This study points out the importance of statin treatment in affecting plaque biology in T2D. It also implies that other biological components, beyond oxLDL, need to be identified and targeted to further reduce the risk of events among T2D patients receiving statin treatment.
  •  
33.
  • Volkov, Petr, et al. (författare)
  • A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits
  • 2016
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, highdensity lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys) metabolic traits associated with the development of obesity and diabetes.
  •  
34.
  •  
35.
  • Volkov, Petr, et al. (författare)
  • Whole-genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:4, s. 1074-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology.Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome on a single nucleotide resolution, in pancreatic islets from donors with T2D and non-diabetic controls. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function e.g. PDX1, TCF7L2 and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions and different histone marks were enriched in the T2D associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2 and SOCS2 that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured β-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e. protein-coding, non-coding and pseudogenes) was associated with islet expression levels.Our study provides a comprehensive picture of the islet DNA methylome in both non-diabetic and diabetic individuals and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D pathogenesis.
  •  
36.
  • Yang, Beatrice, et al. (författare)
  • Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic Islets from Patients with Type 2 Diabetes.
  • 2012
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 26:7, s. 1203-1212
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.
  •  
37.
  • 2017
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-37 av 37
Typ av publikation
tidskriftsartikel (35)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Volkov, Petr (35)
Ling, Charlotte (27)
Rönn, Tina (16)
Perfilyev, Alexander (13)
Bacos, Karl (13)
Vaag, Allan (10)
visa fler...
Groop, Leif (8)
Eliasson, Lena (8)
Dayeh, Tasnim (8)
Olsson, Anders H (6)
Gillberg, Linn (6)
Nilsson, Jan (5)
Orho-Melander, Marju (5)
Goncalves, Isabel (5)
Edsfeldt, Andreas (5)
Nilsson, Emma (4)
Dekker-Nitert, Marlo ... (4)
Eriksson, Karl-Fredr ... (4)
Jansson, Per-Anders, ... (3)
Ahlqvist, Emma (3)
Mulder, Hindrik (3)
Almgren, Peter (3)
Tengryd, Christoffer (3)
Cavalera, Michele (3)
Nitulescu, Mihaela (3)
Pedersen, M. (2)
Engström, Gunnar (2)
Fadista, Joao (2)
Lindqvist, Andreas (2)
Hansson, Ola (2)
Renström, Erik (2)
Wierup, Nils (2)
Hamilton, Alexander (2)
Franks, Paul W. (2)
Brøns, Charlotte (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Sun, Jiangming (2)
Dahlman, Ingrid (2)
Klovins, Janis (2)
Artner, Isabella (2)
Persson, Ana (2)
Kalamajski, Sebastia ... (2)
Wollheim, Claes (2)
Ruhrmann, Sabrina (2)
Esguerra, Jonathan L ... (2)
Iggman, David (2)
Tornberg, Åsa (2)
Lagerstedt, Jens O. (2)
Karagiannopoulos, Al ... (2)
visa färre...
Lärosäte
Lunds universitet (34)
Karolinska Institutet (9)
Göteborgs universitet (5)
Uppsala universitet (5)
Umeå universitet (2)
Malmö universitet (2)
visa fler...
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy