SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wendt C) "

Sökning: WFRF:(Wendt C)

  • Resultat 51-60 av 248
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Aartsen, M. G., et al. (författare)
  • SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 807:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft gamma-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years. of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.
  •  
52.
  • Aartsen, M. G., et al. (författare)
  • The Contribution Of Fermi-2Lac Blazars To Diffuse Tev-Pev Neutrino Flux
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 835:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of -2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as -2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.
  •  
53.
  • Achterberg, A., et al. (författare)
  • Detection of atmospheric muon neutrinos with the IceCube 9-string detector
  • 2007
  • Ingår i: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:2, s. 027101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst)+/- 14.5(stat) events from atmospheric neutrinos.
  •  
54.
  • Aartsen, M. G., et al. (författare)
  • A Combined Maximum-Likelihood Analysis Of The High-Energy Astrophysical Neutrino Flux Measured With Icecube
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 809:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies greater than or similar to 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, nu(mu)-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 +/- 0.09 and a flux at 100 TeV of (6.7(-1.2)(+1.1)) x 10(-18) GeV-1 s(-1) sr(-1) cm(-2). Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8 sigma (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 sigma (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a nu(e) fraction of 0.18 +/- 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6 sigma ( p = 0.014%).
  •  
55.
  • Aartsen, M. G., et al. (författare)
  • Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:2, s. 022001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutLrinos produced in distant astrophysical objects. A search for. greater than or similar to 100 TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Phi(v) = 2.06(-0.3)(+0.4) x 10(-18) (E-v = 10(5) GeV)-2.46 +/- 0.12GeV-1 cm(-2) sr(-1) s(-1) for 25 TeV < E-v < 1.4 PeV, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90% confidence.
  •  
56.
  • Aartsen, M. G., et al. (författare)
  • Characterization of the atmospheric muon flux in IceCube
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 78, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
  •  
57.
  • Aartsen, M. G., et al. (författare)
  • Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Delta m(32)(2) = 2.72(-0.20)(+0.19) x 10(-3) eV(2) and sin(2)theta(23) = 0.53(-0.12)(+0.09) (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
  •  
58.
  • Aartsen, M. G., et al. (författare)
  • Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube
  • 2015
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
  •  
59.
  • Aartsen, M. G., et al. (författare)
  • Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:17
  • Tidskriftsartikel (refereegranskat)abstract
    • A diffuse flux of astrophysical neutrinos above 100 TeV has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35 TeV and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for showerlike events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (f(e) : f(mu) : f(tau))(circle plus) approximate to (1 : 1 : 1)(circle plus) flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on nonstandard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally tracklike composition of (0 : 1 : 0)(circle plus) is excluded at 3.3 sigma, and a purely showerlike composition of (1 : 0 : 0)(circle plus) is excluded at 2.3 sigma.
  •  
60.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the Atmospheric nu(e) Spectrum with IceCube
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 248
Typ av publikation
tidskriftsartikel (240)
konferensbidrag (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (241)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Kolanoski, H. (143)
Helbing, K. (143)
Hoshina, K. (143)
Karle, A. (143)
Montaruli, T. (143)
Olivas, A. (143)
visa fler...
Rawlins, K. (143)
Resconi, E. (143)
Rhode, W. (143)
Rott, C. (143)
Ryckbosch, D. (143)
Schmidt, T. (143)
Stanev, T. (143)
Stezelberger, T. (143)
Taboada, I. (143)
Bai, X. (142)
Kowalski, M. (142)
Berley, D. (142)
Bernardini, E. (142)
Blaufuss, E. (142)
Desiati, P. (142)
Gerhardt, L. (142)
Halzen, F. (142)
Hanson, K. (142)
Ishihara, A. (142)
Karg, T. (142)
Madsen, J. (142)
Seckel, D. (142)
Seunarine, S. (142)
Spiering, C. (142)
Adams, J. (140)
Kappes, A. (140)
Meagher, K. (140)
Van Eijndhoven, N. (139)
De Clercq, C. (139)
Hoffman, K. D. (139)
Kiryluk, J. (139)
Maruyama, R. (139)
Sarkar, S. (139)
Fazely, A. R. (138)
Gallagher, J. (138)
Grant, D. (138)
Hultqvist, K. (138)
Przybylski, G. T. (138)
Barwick, S. W. (137)
Bay, R. (137)
Diaz-Velez, J. C. (137)
Hickford, S. (137)
Hill, G. C. (137)
Spiczak, G. M. (137)
visa färre...
Lärosäte
Uppsala universitet (168)
Stockholms universitet (140)
Karolinska Institutet (57)
Lunds universitet (46)
Linnéuniversitetet (15)
Göteborgs universitet (12)
visa fler...
Chalmers tekniska högskola (10)
Umeå universitet (3)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (3)
Jönköping University (2)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
RISE (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (248)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (177)
Medicin och hälsovetenskap (36)
Teknik (4)
Samhällsvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy