SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser) "

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Oceanografi hydrologi och vattenresurser)

  • Resultat 31-40 av 4891
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Oni, Stephen, et al. (författare)
  • Local- and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests
  • 2015
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 120:11, s. 2402-2426
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest harvesting and climate change may significantly increase concentrations and fluxes of dissolved organic carbon (DOC) in boreal surface waters. However, the likely magnitude of any effect will vary depending on the landscape-element type and spatial scale. We used a chain of hydrological, empirical, and process-based biogeochemical models coupled to an ensemble of downscaled Regional Climate Model experiments to develop scenario storylines for local- and landscape-scale effects of forest harvesting and climate change on surface water DOC concentrations and fluxes. Local-scale runoff, soil temperature, and DOC dynamics were simulated for a range of forest and wetland landscape-element types and at the larger landscape scale. The results indicated that climate change will likely lead to greater winter flows and earlier, smaller spring peaks. Both forest harvesting and climate change scenarios resulted in large increases in summer and autumn runoff and higher DOC fluxes. Forest harvesting effects were clearly apparent at local scales. While at the landscape scale, approximately 1 mg L−1 (or 10%) of the DOC in surface waters can be attributed to clear-cuts, both climate change and intensified forestry can each increase DOC concentrations by another 1 mg L−1 in the future, which is less than that seen in many waterbodies recovering from acidification. These effects of forestry and climate change on surface water DOC concentrations are additive at a landscape scale but not at the local scale, where a range of landscape-element specific responses were observed.
  •  
32.
  • Peacock, Mike, et al. (författare)
  • Spatial and Seasonal Variations in Dissolved Methane Across a Large Lake
  • 2023
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes process large volumes of organic carbon (OC), are important sources of methane (CH4), and contribute to climatic warming. However, there is a lack of data from large lakes >500 km(2), which creates uncertainty in global budgets. In this data article, we present dissolved CH4, OC bioreactivity measurements, water chemistry, and algal biovolumes at 11 stations across Lake Malaren, the third largest (1,074 km(2)) Swedish lake. Total phosphorus concentrations show that during the study period the lake was classed as mesotrophic/eutrophic. Overall mean CH4 concentration from all stations, sampled five times to cover seasonal variation, was 2.51 mu g l(-1) (0.98-5.39 mu g l(-1)). There was no significant seasonal variation although ranges were greatest during summer. Concentrations of CH4 were greatest in shallow waters close to anthropogenic nutrient sources, whilst deeper, central basins had lower concentrations. Methane correlated positively with measures of lake productivity (chlorophyll a, total phosphorus), and negatively to water depth and oxygen concentration, with oxygen emerging as the sole significant driver in a linear mixed effects model. We collated data from other lakes >500 km(2) (n = 21) and found a significant negative relationship between surface area and average CH4 concentration. Large lakes remain an understudied contributor to the global CH4 cycle and future research efforts should aim to quantify the spatial and temporal variation in their diffusive and ebullitive emissions, and associated drivers. Plain Language Summary Lakes contribute to climatic warming, because they emit large amounts of the powerful greenhouse gas methane into the atmosphere. This occurs because lake bottom sediments and lake waters are home to microbes that produce methane, which then travels diffusively in a dissolved form, or as bubbles, through the lake water and into the air. There is large uncertainty about how much methane is released by lakes on a global scale, and more measurements are required to reduce this uncertainty, particularly from very large lakes. In our study, we measured dissolved methane from 11 sampling locations across a very large Swedish lake, and repeated this five times over a year. Levels of methane within the lake were generally low, but they varied over space and time. Higher methane levels occurred in shallower waters near large towns and cities, and were associated with greater concentrations of nutrients such as phosphorus, which act as food for the methane-producing microbes.
  •  
33.
  •  
34.
  • Teutschbein, Claudia, 1985-, et al. (författare)
  • Future Riverine Inorganic Nitrogen Load to the Baltic Sea From Sweden : An Ensemble Approach to Assessing Climate Change Effects
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 31:11, s. 1674-1701
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic increase of bioreactive nitrogen entering the Earth’s ecosystems continues toattract growing attention. Increasingly large quantities of inorganic nitrogen are flushed from land towater, accelerating freshwater, and marine eutrophication. Multiple, interacting, and potentiallycountervailing drivers control the future hydrologic export of inorganic nitrogen. In this paper, we attempt toresolve these land-water interactions across boreal/hemiboreal Sweden in the face of a changing climatewith help of a versatile modeling framework to maximize the information value of existing measurementtime series. We combined 6,962 spatially distributed water chemistry observations spread over 31 years withdaily streamflow and air temperature records. An ensemble of climate model projections, hydrologicalsimulations, and several parameter parsimonious regression models was employed to project future riverineinorganic nitrogen dynamics across Sweden. The median predicted increase in total inorganic nitrogenexport from Sweden (2061–2090) due to climate change was 14% (interquartile range 0–29%), based on theensemble of 7,500 different predictions for each study site. The overall export as well as the seasonal patternof inorganic nitrogen loads in a future climate are mostly influenced by longer growing seasons and morewinter flow, which offset the expected decline in spring flood. The predicted increase in inorganic nitrogenloading due to climate change means that the political efforts for reducing anthropogenic nitrogen inputsneed to be increased if ambitions for reducing the eutrophication of the Baltic Sea are to be achieved.
  •  
35.
  • Rutgersson, Anna, 1971-, et al. (författare)
  • Natural hazards and extreme events in the Baltic Sea region
  • 2022
  • Ingår i: Earth System Dynamics. - : Copernicus Publications. - 2190-4979 .- 2190-4987. ; 13:1, s. 251-301
  • Tidskriftsartikel (refereegranskat)abstract
    • A natural hazard is a naturally occurring extreme event that has a negative effect on people and society or the environment. Natural hazards may have severe implications for human life and can potentially generate economic losses and damage ecosystems. A better understanding of their major causes, probability of occurrence, and consequences enables society to be better prepared to save human lives as well as to invest in adaptation options. Natural hazards related to climate change are identified as one of the Grand Challenges in the Baltic Sea region. Here, we summarize existing knowledge about extreme events in the Baltic Sea region with a focus on the past 200 years as well as on future climate scenarios. The events considered here are the major hydro-meteorological events in the region and include wind storms, extreme waves, high and low sea levels, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. We also address some ecological extremes and the implications of extreme events for society (phytoplankton blooms, forest fires, coastal flooding, offshore infrastructure, and shipping). Significant knowledge gaps are identified, including the response of large-scale atmospheric circulation to climate change and also concerning specific events, for example, the occurrence of marine heat waves and small-scale variability in precipitation. Suggestions for future research include the further development of high-resolution Earth system models and the potential use of methodologies for data analysis (statistical methods and machine learning). With respect to the expected impacts of climate change, changes are expected for sea level, extreme precipitation, heat waves and phytoplankton blooms (increase), and cold spells and severe ice winters (decrease). For some extremes (drying, river flooding, and extreme waves), the change depends on the area and time period studied.
  •  
36.
  • Wurzbacher, Christian, 1980, et al. (författare)
  • Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.
  • 2017
  • Ingår i: The ISME journal. - : Springer Science and Business Media LLC. - 1751-7370 .- 1751-7362. ; 11:8, s. 1938-1941
  • Tidskriftsartikel (refereegranskat)abstract
    • In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.
  •  
37.
  • Hylén, Astrid, 1991, et al. (författare)
  • Enhanced benthic nitrous oxide and ammonium production after natural oxygenation of long-term anoxic sediments
  • 2022
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 67:2, s. 419-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal and shelf sediments are central in the global nitrogen (N) cycle as important sites for the removal offixed N. However, this ecosystem service can be hampered by ongoing deoxygenation in many coastal areas.Natural reoxygenation could reinstate anoxic sediments as sites wherefixed N is removed efficiently. To investi-gate this further, we studied benthic N cycling in previously long-term anoxic sediments, following a largeintrusion of oxygenated water to the Baltic Sea. During three campaigns in 2016–2018, we measured in situsediment–waterfluxes of ammonium (NHþ4), nitrate (NO3), oxygen (O2), dissolved inorganic carbon, and NO3reduction processes using benthic chamber landers. Sediment microprofiles of O2, nitrous oxide (N2O), andhydrogen sulfide were measured in sediment cores. At a permanently oxic station, denitrification to N2was themain NO3reduction process. Benthic N2O production appeared to be linked to nitrification, although no netN2Ofluxes from the sediment were detected. At newly oxygenated sites, dissimilatory NO3reduction to NHþ4comprised almost half of the total NO3reduction. At these stations, the removal offixed N was inefficient dueto high effluxes of NHþ4. Sedimentary N2O production was associated with incomplete denitrification, account-ing for 41–88% of the total denitrification rate. Microprofiling revealed algae aggregates as potential hotspots ofseafloor N2O production. Our results show that transient oxygenation of euxinic systems initiates benthic NO3reduction, but may not lead to efficient sedimentary removal offixed N. Instead, recycling of N compounds ispromoted, which may accelerate the return to anoxia.
  •  
38.
  • Löfgren, Johan, 1983, et al. (författare)
  • Sea Level Monitoring Using a GNSS-Based Tide Gauge
  • 2009
  • Ingår i: 2nd International Colloquium - Scientific and Fundamental Aspects of the Galileo Programme, 14 - 16 October 2009, Padua, Italy.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Global climate change is believed to result in the melting of large masses of ice in Polar Regions, bringing freshwater into the ocean, and changing the sea level. The traditional way to measure the sea level, by tide gauges, results in measurements relative to the Earth’s crust. However, in order to fully understand the sea level changes, absolute measurements (change in sea level in relation to the Earth’s center of gravity) are necessary, in particular in regions affected by post-glacial uplift, e.g., Fennoscandia. Satellite techniques, e.g., GNSS can be used to determine the motion of the Earth’s crust in relation to the center of gravity. By measuring reflected GNSS-signals from the sea surface, information of the sea level change can be obtained. Therefore a GNSS-based tide gauge is proposed.The proposed GNSS-based tide gauge installation consists of two antennas, one zenith looking right hand circular polarized (RHCP) and one nadir looking left hand circular polarized (LHCP), mounted back-to-back on a beam over the ocean. The RHCP antenna receives the GNSS-signals directly, whereas the LHCP antenna receives the signals reflected from the sea surface. Because of the additional path delay of the reflected signal, the LHCP antenna will appear to be a virtual GNSS-antenna located below the sea surface. When the sea level changes, the path delay of the reflected signal changes, thus the LHCP antenna will appear to be in a new position. The vertical position change corresponds to twice the sea level change, and therefore monitors sea level changes.Multiple satellites with different elevation and azimuth angles are observed each epoch and will give rise to reflected signals with different incidence angles from different directions. This means that the estimated sea level change can not be considered to originate from one specific point on the surface, but rather represents the change of an average surface formed by the reflection points.An experimental setup was installed in December 2008 over the ocean at Onsala Space Observatory (OSO) at the west coast of Sweden. Data was collected during three days using two Leica GRX1200+ receivers (one for the direct and one for the reflected signal). The receivers recorded 40 hours of continuous 20Hz data. The signal-to-noise ratio (SNR) as determined by the two receivers was used as a first data quality check. On average the SNR difference between the directly received and the reflected signals was less than 3dB.The data was analyzed using an in-house developed software in MATLAB. Solutions were made using L1 phase delays for relative positioning. Two approaches to estimate the vertical difference between the RHCP and the LHCP antenna were tested: hourly estimates of the vertical difference, and high-rate estimates of the vertical difference. For the hourly estimates 40 hours of continuous 1Hz data (reduced for faster processing using the TEQC software) were used. Each solution was made using 20 minutes of data every full hour, solving for differences in the local vertical components together with receiver clock and phase ambiguities differences for each epoch.The solution for the high-rate vertical component was made in two steps. First, the phase ambiguity differences were determined. This was done using equally distributed short intervals of ~1 second (21 epochs) from ~20 minutes of 20Hz data, solving for difference in phase ambiguities and receiver clocks every epoch together with differences in vertical coordinate for each short interval. The processing was done based on the assumptions that the sea surface does not change significantly during ~1 second and that the satellite geometry changes considerably in ~20 minutes. Second, the differences in phase ambiguities were rounded to the nearest integer and inserted as known values for a reprocessing of the 20Hz data. In this reprocessing the receiver clock parameters were estimated every epoch and the vertical coordinate difference with different time resolutions (e.g. 0.05s, 1s, 30s).The resulting time-series for the sea level change from the hourly solutions were compared to data from two traditional tide gauges operated by the Swedish Meteorological and Hydrological Institute at Ringhals and Göteborg, about 18 km south of and 33 km north of OSO, respectively. The GNSS-derived sea level change resembles reasonably well the independently observed sea level change. This indicates that the GNSS-tide gauge gives valuable results for sea level monitoring. Furthermore, the use of the high-rate GNSS-receivers additionally allows a flexible time resolution for sea level monitoring.
  •  
39.
  • Brinkmann, Inda, et al. (författare)
  • Drought recorded by Ba/Ca in coastal benthic foraminifera
  • 2022
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 19:9, s. 2523-2535
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing occurrences of extreme weather events, such as the 2018 drought over northern Europe, are a concerning issue under global climate change. High-resolution archives of natural hydroclimate proxies, such as rapidly accumulating sediments containing biogenic carbonates, offer the potential to investigate the frequency and mechanisms of such events in the past. Droughts alter the barium (Ba) concentration of near-continent seawater through the reduction in Ba input from terrestrial runoff, which in turn may be recorded as changes in the chemical composition (Ba/Ca) of foraminiferal calcium carbonates accumulating in sediments. However, so far the use of Ba/Ca as a discharge indicator has been restricted to planktonic foraminifera, despite the high relative abundance of benthic species in coastal, shallow-water sites. Moreover, benthic foraminiferal Ba/Ca has mainly been used in open-ocean records as a proxy for paleo-productivity. Here we report on a new geochemical data set measured from living (CTG-labeled) benthic foraminiferal species to investigate the capability of benthic Ba/Ca to record changes in river runoff over a gradient of contrasting hydroclimatic conditions. Individual foraminifera (Bulimina marginata, Nonionellina labradorica) were analyzed by laser-ablation ICP-MS over a seasonal and spatial gradient within Gullmar Fjord, Swedish west coast, during 2018-2019. The results are compared to an extensive meteorological and hydrological data set, as well as sediment and pore-water geochemistry. Benthic foraminiferal Ba/Ca correlates significantly to riverine runoff; however, the signals contain both spatial trends with distance to Ba source and species-specific influences such as micro-habitat preferences. We deduce that shallow-infaunal foraminifera are especially suitable as proxy for terrestrial Ba input and discuss the potential influence of water-column and pore-water Ba cycling. While distance to Ba source, water depth, pore-water geochemistry, and species-specific effects need to be considered in interpreting the data, our results demonstrate confidence in the use of Ba/Ca of benthic foraminifera from near-continent records as a proxy for past riverine discharge and to identify periods of drought.
  •  
40.
  • Hobiger, Thomas, 1978, et al. (författare)
  • Software-Defined Radio Direct Correlation GNSS Reflectometry by Means of GLONASS
  • 2016
  • Ingår i: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. - 2151-1535 .- 1939-1404. ; 9:10, s. 4834-4842
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based GNSS reflectometry (GNSS-R)systems can be realized by different means. The concept ofcorrelation between direct and reflected GNSS signals is basicallypossible with all GNSS systems. However, using signals fromthe Russian GLONASS system simplifies the signal processingso that software-defined radio (SDR) components can be usedat replace expensive hardware solutions. This paper discusseshow such a solution, called GLONASS-R, can be realized usingentirely off-the-shelf components. Field tests with such a systemdemonstrate the capability to monitor sea surface heights with aprecision of 3 cm or better even with a sampling rate of 1.5 Hz.The flexibility of a SDR and the simple concept of GLONASS-Rallow build such a system with low costs and adapt it to the needsof any ground-based GNSS-R problem.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 4891
Typ av publikation
tidskriftsartikel (3325)
konferensbidrag (435)
rapport (367)
bokkapitel (245)
doktorsavhandling (183)
annan publikation (132)
visa fler...
forskningsöversikt (121)
bok (32)
licentiatavhandling (30)
samlingsverk (redaktörskap) (16)
recension (3)
proceedings (redaktörskap) (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (3609)
övrigt vetenskapligt/konstnärligt (1180)
populärvet., debatt m.m. (95)
Författare/redaktör
Laudon, Hjalmar (122)
Di Baldassarre, Giul ... (122)
Seibert, Jan (106)
Bishop, Kevin (92)
Futter, Martyn (81)
Berndtsson, Ronny (77)
visa fler...
Sonesten, Lars (73)
Destouni, Georgia (70)
Omstedt, Anders, 194 ... (69)
Barthel, Roland, 196 ... (69)
Xu, Chong Yu (65)
Lundin, L-C (63)
Niemi, Auli (57)
Swart, Sebastiaan, 1 ... (48)
Halldin, Sven (48)
Santos, Isaac R. (44)
Duan, Zheng (41)
Wåhlin, Anna, 1970 (37)
Weyhenmeyer, Gesa A. (36)
Huser, Brian (35)
Ridolfi, Elena (35)
Beven, Keith (35)
Mazzoleni, Maurizio (34)
Andersson, Agneta (33)
Halldin, S (33)
Sponseller, Ryan A. (33)
Al-Ansari, Nadhir, 1 ... (32)
Chen, Deliang, 1961 (32)
Teutschbein, Claudia ... (31)
Rodhe, Allan (31)
Broström, Göran (30)
Heuzé, Céline, 1988 (30)
Eriksson, Leif, 1970 (30)
Rutgersson, Anna, 19 ... (30)
Bertilsson, Stefan (29)
Bhattacharya, Prosun ... (28)
Bastviken, David (28)
Köhler, Stephan (28)
Nycander, Jonas (28)
Karlsson, Jan, 1974- (28)
Löfgren, Stefan (27)
Fagerlund, Fritjof (27)
Todorovic, Andrijana (27)
Jarsjö, Jerker (26)
Bengtsson, Lars (25)
Döös, Kristofer (25)
Morf, Andrea, 1968 (25)
Haas, Rüdiger, 1966 (24)
Arneborg, Lars, 1969 (24)
Fölster, Jens (24)
visa färre...
Lärosäte
Uppsala universitet (1202)
Göteborgs universitet (961)
Sveriges Lantbruksuniversitet (939)
Stockholms universitet (662)
Lunds universitet (501)
Kungliga Tekniska Högskolan (374)
visa fler...
Chalmers tekniska högskola (369)
Umeå universitet (344)
Linköpings universitet (230)
Luleå tekniska universitet (93)
Havs- och vattenmyndigheten (69)
Linnéuniversitetet (51)
Karlstads universitet (33)
RISE (28)
Högskolan i Gävle (27)
Naturvårdsverket (25)
Naturhistoriska riksmuseet (24)
IVL Svenska Miljöinstitutet (21)
Södertörns högskola (17)
VTI - Statens väg- och transportforskningsinstitut (14)
Örebro universitet (13)
Karolinska Institutet (10)
Högskolan i Halmstad (9)
Mittuniversitetet (7)
Högskolan Kristianstad (5)
Mälardalens universitet (4)
Högskolan i Borås (4)
Försvarshögskolan (3)
Jönköping University (2)
Malmö universitet (2)
Nordiska Afrikainstitutet (1)
Högskolan Väst (1)
Handelshögskolan i Stockholm (1)
Högskolan i Skövde (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (4566)
Svenska (308)
Tyska (5)
Odefinierat språk (3)
Franska (2)
Spanska (2)
visa fler...
Persiska (2)
Serbiska (2)
Kinesiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4886)
Teknik (582)
Lantbruksvetenskap (331)
Samhällsvetenskap (218)
Medicin och hälsovetenskap (45)
Humaniora (33)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy