SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) ;pers:(Riesbeck Kristian)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) > Riesbeck Kristian

  • Resultat 1-10 av 168
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lamei, Sepideh, et al. (författare)
  • The secretome of honey bee-specific lactic acid bacteria inhibits Paenibacillus larvae growth
  • 2019
  • Ingår i: Journal of Apicultural Research. - : Informa UK Limited. - 0021-8839 .- 2078-6913. ; 58:3, s. 405-412
  • Tidskriftsartikel (refereegranskat)abstract
    • American Foulbrood (AFB) is a particularly pernicious bacterial disease of honey bees due to the extreme persistence of endospores of the causative agent Paenibacillus larvae. These spores are resistant to harsh environmental conditions, unaffected by antimicrobial agents and can remain viable for decades. The germination of the endospore in the larval midgut is the crucial first step leading to infection, followed by vegetative growth, tissue invasion and disease, culminating in spore formation when the host´s nutrients have been exhausted. Therefore, inhibiting spore germination or impeding early vegetative growth would be a highly effective strategy for limiting the impact of AFB. We previously showed that honey bee-specific lactic acid bacteria (hbs–LAB) had a major inhibitory effect on P. larvae both in culture and in larval bioassays. The present study documents the progress towards characterization of compounds, processes and interactions between P. larvae and the hbs–LAB responsible for this inhibitory effect. Firstly, we used an agar diffusion assay and larval infection bioassay to show that most, if not all, of the inhibitory effect was associated with the extracellular fraction (secretome). Secondly, we employed a turbidimetric growth assay to demonstrate that the hbs–LAB secretome strongly inhibited P. larvae vegetative growth, however, probably not by reducing spore germination. The inhibition was similarly effective against both major P. larvae genotypes (ERIC-I and II) in all experiments. The implications of our results for characterization of the secretome and for the management and treatment of AFB and P. larvae are further discussed.
  •  
2.
  • Singh, Birendra, et al. (författare)
  • A fine-tuned interaction between the trimeric autotransporter Haemophilus surface fibrils and vitronectin leads to serum resistance and adherence to respiratory epithelial cells.
  • 2014
  • Ingår i: Infection and Immunity. - 1098-5522. ; 82:6, s. 2378-2389
  • Tidskriftsartikel (refereegranskat)abstract
    • Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin that inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We previously reported that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in inhibition of MAC formation and invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal comprising amino acids Hsf 429-652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352-374. H. influenzae was killed more rapidly in vitronectin-depleted serum when compared to normal human serum (NHS), and an increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing E. coli selectively acquired vitronectin from serum that resulted in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf an increased bacterial adherence and internalization of epithelial cells was observed. Taken together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to an increased virulence of Hib.
  •  
3.
  • Paulsson, Magnus, et al. (författare)
  • Peptidoglycan-Binding Anchor Is a Pseudomonas aeruginosa OmpA Family Lipoprotein With Importance for Outer Membrane Vesicles, Biofilms, and the Periplasmic Shape
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen Pseudomonas aeruginosa carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation. In addition to other OmpAs, in silico analysis revealed that the putative outer membrane protein (OMP) with gene locus PA1041 is a lipoprotein with an OmpA domain and, hence, is a potential virulence factor. This study aimed to evaluate PA1041 as a PG-binding protein and describe its effect on the phenotype. Clinical strains were confirmed to contain the lipoprotein resulting from PA1041 expression with Western blot, and PG binding was verified in enzyme-linked immunosorbent assay (ELISA). By using a Sepharose bead-based ELISA, we found that the lipoprotein binds to meso-diaminopimelic acid (mDAP), an amino acid in the pentapeptide portion of PGs. The reference strain PAO1 and the corresponding transposon mutant PW2884 devoid of the lipoprotein were examined for phenotypic changes. Transmission electron microscopy revealed enlarged periplasm spaces near the cellular poles in the mutant. In addition, we observed an increased release of OMV, which could be confirmed by nanoparticle tracking analysis. Importantly, mutants without the lipoprotein produced a thick, but loose and unorganized, biofilm in flow cells. In conclusion, the lipoprotein from gene locus PA1041 tethers the outer membrane to the PG layer, and mutants are viable, but display severe phenotypic changes including disordered biofilm formation. Based upon the phenotype of the P. aeruginosa PW2884 mutant and the function of the protein, we designate the lipoprotein with locus tag PA1041 as “peptidoglycan-binding anchor” (Pba).
  •  
4.
  • Stephan, Jörg, et al. (författare)
  • Honeybee-specific lactic acid bacterial supplements have no effect on American foulbrood infected honeybee colonies
  • 2019
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 85:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Paenibacillus larvae, causative agent of American Foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g. tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee pathogenic and mutualistic microorganisms, and in particular the antagonistic effects of honeybee-specific Lactic Acid Bacteria (hbs-LAB) against P. larvae These effects have only been demonstrated on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies, recorded AFB symptoms, bacterial spore levels and two measures of colony health. To account for the complexity of a bee colony we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels, and might therefore "mask" the potential for disease. Hbs-LAB tended to reduce brood size in the short-term, but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level, but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at colony level.ImportanceThe previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays has identified a possible new approach to AFB control. However, honeybee colonies are complex super-organisms where social immune defenses play a major role in resistance against disease at the colony-level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at individual level, hbs-LAB supplements did not affect AFB symptoms at colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB, and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.
  •  
5.
  • Nygård Skalman, Lars, 1985- (författare)
  • Pathogen entry mechanisms and endocytic responses to plasma membrane damage
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Endocytosis is a fundamental cellular process by which cells transport material from the outside to the inside of the cell through the formation of membrane invaginations that bud off from the plasma membrane. This process is important for nutrient uptake, regulating cell surface receptors and the overall plasma membrane composition. Cells have several different types of endocytic pathways where clathrin- mediated endocytosis is the most studied. Importantly, pathogens and secreted virulence factors bind to cell surface receptors and hijack the endocytic pathways in order to enter host cells. Depending on their size and molecular composition, pathogens and virulence factors are thought to make use of distinct endocytic pathways into the cell. This thesis focuses on early host cell interactions with virus, bacterial membrane vesicles and a pore-forming toxin, with a particular emphasis on endocytic mechanisms and plasma membrane repair.During entry of pathogens, it is thought that interactions with specific cell surface molecules drive the recruitment of endocytic proteins to the plasma membrane. Viruses possess a very defined molecular composition and architecture, which facilitate specificity to these interactions. We found that Adenovirus 37, a human ocular pathogen, binds to αVβ1 and α3β1 integrins on human corneal epithelial cells and that this interaction is important for infection. In contrast to viruses, membrane vesicles shed from Helicobacter pylori are heterogeneous in size and molecular composition. These vesicles harbour various adhesins and toxins that may facilitate binding to the cell surface and recruitment of different endocytic pathways. We developed a quantitative internalization assay and showed that the H. pylori vesicles were internalized mainly via clathrin-mediated endocytosis but were also capable of exploiting other endocytic pathways.Damage to the plasma membrane disrupts cellular homeostasis and can lead to cell death if not repaired immediately. Although endocytic mechanisms have been shown to be important for plasma membrane repair, little is known about their specific role. Listeriolysin O (LLO) is a bacterial toxin that can form pores in the plasma membrane and disrupt cellular homeostasis. We developed a reporter system for real-time imaging of the endocytic response to LLO pore formation. We found that two clathrin-independent endocytic pathways were important for plasma membrane repair. However, they were not directly involved in removing LLO pores from the plasma membrane. Our data suggests that these endocytic systems might rather influence membrane repair by their ability to regulate the plasma membrane composition, shape and tension.In conclusion, this thesis describes how pathogens and their virulence factors make use of specific mechanisms to enter host cells as well as revealing new insights on the role of the endocytic pathways in plasma membrane repair. 
  •  
6.
  • Su, Shanice Yc, et al. (författare)
  • The Laminin Interactome : A Multifactorial Laminin-Binding Strategy by Nontypeable Haemophilus influenzae for Effective Adherence and Colonization
  • 2019
  • Ingår i: The Journal of infectious diseases. - : Oxford University Press (OUP). - 1537-6613 .- 0022-1899. ; 220:6, s. 1049-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminin is a well-defined component of the airway basement membrane (BM). Efficient binding of laminin via multiple interactions is important for nontypeable Haemophilusinfluenzae (NTHi) colonization in the airway mucosa. Here we identified elongation factor thermo-unstable (EF-Tu), L-lactate dehydrogenase (LDH), Protein D and peptidoglycan-associated lipoprotein P6 as novel laminin-binding proteins (Lbps) of NTHi. In parallel with other well-studied Lbps (P4, PE, PF and Hap), EF-Tu, LDH, PD and P6 exhibited interactions with laminin, and mediated NTHi laminin-dependent adherence to pulmonary epithelial cell lines. Importantly, the NTHi laminin interactome consisting of the well-studied and novel Lbps recognized laminin LG domains from the subunit α chains of laminin-111 and -332, of which the latter isoform is the main laminin in the airway BM. The NTHi interactome mainly targeted multiple heparin-binding domains of laminin. In conclusion, the NTHi interactome exhibited a high plasticity of interactions with different laminin isoforms via multiple heparin-binding sites.
  •  
7.
  • Abdillahi, Suado M, et al. (författare)
  • The Pulmonary Extracellular Matrix Is a Bactericidal Barrier Against Haemophilus influenzae in Chronic Obstructive Pulmonary Disease (COPD) : Implications for an in vivo Innate Host Defense Function of Collagen VI
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human commensal commonly residing in the nasopharynx of preschool children. It occasionally causes upper respiratory tract infection such as acute otitis media, but can also spread to the lower respiratory tract causing bronchitis and pneumonia. There is increasing recognition that NTHi has an important role in chronic lower respiratory tract inflammation, particularly in persistent infection in patients suffering from chronic obstructive pulmonary disease (COPD). Here, we set out to assess the innate protective effects of collagen VI, a ubiquitous extracellular matrix component, against NTHi infection in vivo. In vitro, collagen VI rapidly kills bacteria through pore formation and membrane rupture, followed by exudation of intracellular content. This effect is mediated by specific binding of the von Willebrand A (VWA) domains of collagen VI to the NTHi surface adhesins protein E (PE) and Haemophilus autotransporter protein (Hap). Similar observations were made in vivo specimens from murine airways and COPD patient biopsies. NTHi bacteria adhered to collagen fibrils in the airway mucosa and were rapidly killed by membrane destabilization. The significance in host-pathogen interplay of one of these molecules, PE, was highlighted by the observation that it confers partial protection from bacterial killing. Bacteria lacking PE were more prone to antimicrobial activity than NTHi expressing PE. Altogether the data shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.
  •  
8.
  • Rydberg Millrud, Camilla, et al. (författare)
  • The Activation Pattern of Blood Leukocytes in Head and Neck Squamous Cell Carcinoma Is Correlated to Survival
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Head and neck squamous cell carcinoma (HNSCC) is known to cause substantial immunosuppression. The present study was designed to characterize blood leukocyte activation in HNSCC and to investigate if the individual activation pattern could be related to tumor progress and survival. The leukocyte activation profile of HNSCC patients and healthy controls was assessed with flow cytometry. HNSCC patients displayed increased numbers of monocytes, neutrophils and total leukocytes as well as an enhanced neutrophil/lymphocyte ratio. In addition, patients had a higher percentage of CD69(+), CD71(+) and CD98(+) T cell subsets and NK cells, and a reduced expression of L-selectin in CD14(high)CD16(+) monocytes and neutrophils, when compared to controls. These changes could be correlated to both tumor burden and spread to lymph nodes. Among the cancer patients an increased neutrophil/lymphocyte ratio, a low neutrophil and CD14(high) CD16(+) monocyte activation state and an elevated CD4/CD8 ratio were related to poor survival. In contrast, a high percentage of CD98(+) Th cells appeared to be associated with a better outcome. Taken together, the present data indicate that HNSCC causes activation of blood leukocytes and that the individual activation pattern can be linked to prognosis.
  •  
9.
  • Thofte, Oskar, et al. (författare)
  • Anti-EF-Tu IgG titers increase with age and may contribute to protection against the respiratory pathogen Haemophilus influenzae
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:3, s. 490-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a pathogen that commonly colonizes the nasopharynx of preschool children, causing opportunistic infections including acute otitis media (AOM). Patients suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized with NTHi and occasionally suffer from exacerbations by the bacterium leading to increased morbidity. Elongation-factor thermo unstable (EF-Tu), a protein critical for bacterial protein synthesis, has been found to moonlight on the surface of several bacteria. Here, we show that antibodies against NTHi EF-Tu were present in children already at 18 months of age, and that the IgG antibody titers increased with age. Children harboring NTHi in the nasopharynx also displayed significantly higher IgG concentrations. Interestingly, children suffering from AOM had significantly higher anti-EF-Tu IgG levels when NTHi was the causative agent. Human sera recognized mainly the central and C-terminal part of the EF-Tu molecule and peptide-based epitope mapping confirmed similar binding patterns for sera from humans and immunized mice. Immunization of BALB/c and otitis-prone Junbo (C3H/HeH) mice promoted lower infection rates in the nasopharynx and middle ear, respectively. In conclusion, our results suggest that IgG directed against NTHi EF-Tu may play an important role in the host immune response against NTHi.
  •  
10.
  • Agarwal, Vaibhav, et al. (författare)
  • Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 289:22, s. 15833-15844
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is an ubiquitously expressed, multifunctional plasminogen and fibronectin binding protein facilitating host cell invasion and evasion of innate immunity. In this study we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, while its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 168
Typ av publikation
tidskriftsartikel (150)
forskningsöversikt (10)
konferensbidrag (3)
doktorsavhandling (3)
bokkapitel (2)
Typ av innehåll
refereegranskat (162)
övrigt vetenskapligt/konstnärligt (5)
populärvet., debatt m.m. (1)
Författare/redaktör
Singh, Birendra (32)
Blom, Anna (29)
Forsgren, Arne (27)
Su, Yu Ching (24)
Mörgelin, Matthias (17)
visa fler...
Hallström, Teresia (14)
Zipfel, Peter F. (12)
Resman, Fredrik (11)
Blom, Anna M. (10)
Cardell, Lars-Olaf (9)
Su, Shanice YC (9)
Nordström, Therése (9)
Ermert, David (9)
Agarwal, Vaibhav (8)
Ahl, Jonas (8)
Paulsson, Magnus (8)
Potempa, Jan (7)
Eick, Sigrun (7)
Fleury, Christophe (7)
Sandblad, Linda (6)
Jendholm, Johan (6)
Brant, Marta (6)
Hammerschmidt, Sven (5)
Samuelsson, Martin (5)
Bettoni, Serena (5)
Jusko, Monika (5)
Bergmann, Simone (4)
Tham, Johan (4)
Odenholt, Inga (4)
Månsson, Anne (4)
Schaar, Viveka (4)
Laabei, Maisem (4)
Liu, Guanghui (4)
Westergren-Thorsson, ... (3)
Hallgren, Oskar (3)
Fulde, Marcus (3)
Malm, Sven (3)
Littorin, Nils (3)
Hadzic, Radinka (3)
Slotved, Hans-Christ ... (3)
Lambris, John D. (3)
Thunnissen, Marjolei ... (3)
Jonsson, Sandra (3)
Riesbeck, Kristian, ... (3)
Nilson, Bo (3)
Månsson, Viktor (3)
Maziarz, Karolina (3)
Ram, Sanjay (3)
Manolov, Taras (3)
visa färre...
Lärosäte
Lunds universitet (164)
Karolinska Institutet (14)
Umeå universitet (11)
Örebro universitet (5)
Göteborgs universitet (4)
Malmö universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Stockholms universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (168)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (168)
Naturvetenskap (5)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy