SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Cell and Molecular Biology) ;pers:(Welsh Nils)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Cell and Molecular Biology) > Welsh Nils

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fred, Rikard G. (författare)
  • The Role of RNA Binding Proteins in Insulin Messenger Stability and Translation
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Although the reason for insufficient release of insulin in diabetes mellitus may vary depending on the type and stage of the disease, it is of vital importance that an amplified insulin biosynthesis can meet the increased need during periods of hyperglycemia. The insulin mRNA is highly abundant in beta cells and changes in insulin mRNA levels are, at least in part, controlled by altered rates of mRNA degradation. Since the mechanisms behind the control of insulin messenger stability and translation are still largely obscure, the work presented in this thesis therefore aimed to further investigate the role of insulin mRNA binding proteins in the control of insulin mRNA break-down and utilization for insulin biosynthesis. To clarify how glucose regulates insulin mRNA stability and translation we studied the correlation between polypyrimidine tract binding protein (PTB) gene expression and insulin mRNA levels. It was found that an increase in PTB mRNA and protein levels is paralleled by an increase in insulin mRNA levels. It was also found that PTB binds to the 5’-untranslated region of the insulin mRNA and that insulin mRNA can be translated through a cap-independent mechanism in human islets of Langerhans, possibly due to the interaction with PTB. Further it was discovered that the suppressed insulin biosynthesis in human islets during glucotoxicity is partly due to an induction of the microRNA miR-133a. This induction leads to decreased levels of PTB and insulin biosynthesis rates in human islets. Finally, we were able to identify two proteins, hnRNP U and TIAR, that bind specifically to the insulin mRNA in vitro, and show that the stability and translation of insulin mRNA is oppositely affected by these proteins. In conclusion, insulin producing cells seem to be able to regulate insulin messenger stability and translation by a control mechanism in which the binding of specific proteins to the insulin messenger dictates the outcome. A better understanding of the events leading to insulin production may in the future aid in optimal diagnosis and treatment of type 2 diabetes.
  •  
2.
  • Olerud, Johan, 1977- (författare)
  • Role of Thrombospondin-1 in Endogenous and Transplanted Pancreatic Islets
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 1 diabetes mellitus is a severe life-long disease with a pronounced risk of developing secondary complications. One way to avoid the latter is to restore the fine tuning of blood glucose homeostasis by transplantation of pancreatic islets. However, isolated islets need to be properly engrafted and to re-establish a vascular network in order to regain function. Earlier studies have shown that pancreatic islets experimentally transplanted to e.g. the liver or the kidney become poorly revascularized. In the present thesis, mice deficient of the angiostatic factor thrombospondin-1 (TSP-1) were found to have an impaired beta-cell function. Development of this beta-cell dysfunction was prevented by treatment of TSP-1 deficient mice from birth with the TGFbeta-1 activating sequence of TSP-1. TSP-1 in islets was predominantly expressed in the endothelial cells. Isolated islet endothelial cells was observed to have a low proliferatory and migratory capacity towards angiogenic stimuli, but this could be reversed by neutralizing antibodies to the angiostatic factors alpha1-antitrypsin, endostatin or TSP-1. Transient downregulation of TSP-1 expression in mouse islet cells prior to transplantation improved graft revascularization, blood perfusion, oxygenation and function when evaluated one-month post-transplantation. The same result was achieved when islets or recipients of islets were pre-treated with the hormone prolactin one-month post-transplantation. The present study illustrates the importance of the angiostatic factor TSP-1 for islet beta-cell function and engraftment of islets following transplantation. Interference with TSP-1 can possibly be used to improve the results of clinical islet transplantation.
  •  
3.
  • Wang, Xuan, 1984-, et al. (författare)
  • ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells
  • 2019
  • Ingår i: The FASEB Journal. - : FEDERATION AMER SOC EXP BIOL. - 0892-6638 .- 1530-6860. ; 33:1, s. 88-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc finger BED domain containing protein 6 (Zbed6) has evolved from a domesticated DNA transposon and encodes a transcription factor unique to placental mammals. The aim of the present study was to investigate further the role of ZBED6 in insulin-producing cells, using mouse MIN6 cells, and to evaluate the effects of Zbed6 knockdown on basal -cell functions, such as morphology, transcriptional regulation, insulin content, and release. Zbed6-silenced cells and controls were characterized with a range of methods, including RNA sequencing, chromatin immunoprecipitation sequencing, insulin content and release, subplasma membrane Ca2+ measurements, cAMP determination, and morphologic studies. More than 700 genes showed differential expression in response to Zbed6 knockdown, which was paralleled by increased capacity to generate cAMP, as well as by augmented subplasmalemmal calcium concentration and insulin secretion in response to glucose stimulation. We identified >4000 putative ZBED6-binding sites in the MIN6 genome, with an enrichment of ZBED6 sites at upregulated genes, such as the -cell transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and Nk6 homeobox 1. We also observed altered morphology/growth patterns, as indicated by increased cell clustering, and in the appearance of axon-like Neurofilament, medium polypeptide and tubulin 3, class III-positive protrusions. We conclude that ZBED6 acts as a transcriptional regulator in MIN6 cells and that its activity suppresses insulin production, cell aggregation, and neuronal-like differentiation.Wang, X., Jiang, L., Wallerman, O., Younis, S., Yu, Q., Klaesson, A., Tengholm, A., Welsh, N., Andersson, L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Elksnis, Andris, et al. (författare)
  • Pharmacological Inhibition of NOX4 Improves Mitochondrial Function and Survival in Human Beta-Cells
  • 2021
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have reported beneficial effects of NADPH oxidase 4 (NOX4) inhibition on beta-cell survival in vitro and in vivo. The mechanisms by which NOX4 inhibition protects insulin producing cells are, however, not known. The aim of the present study was to investigate the effects of a pharmacological NOX4 inhibitor (GLX7013114) on human islet and EndoC-beta H1 cell mitochondrial function, and to correlate such effects with survival in islets of different size, activity, and glucose-stimulated insulin release responsiveness. We found that maximal oxygen consumption rates, but not the rates of acidification and proton leak, were increased in islets after acute NOX4 inhibition. In EndoC-beta H1 cells, NOX4 inhibition increased the mitochondrial membrane potential, as estimated by JC-1 fluorescence; mitochondrial reactive oxygen species (ROS) production, as estimated by MitoSOX fluorescence; and the ATP/ADP ratio, as assessed by a bioluminescent assay. Moreover, the insulin release from EndoC-beta H1 cells at a high glucose concentration increased with NOX4 inhibition. These findings were paralleled by NOX4 inhibition-induced protection against human islet cell death when challenged with high glucose and sodium palmitate. The NOX4 inhibitor protected equally well islets of different size, activity, and glucose responsiveness. We conclude that pharmacological alleviation of NOX4-induced inhibition of beta-cell mitochondria leads to increased, and not decreased, mitochondrial ROS, and this was associated with protection against cell death occurring in different types of heterogeneous islets. Thus, NOX4 inhibition or modulation may be a therapeutic strategy in type 2 diabetes that targets all types of islets.
  •  
8.
  • Andersson, Annika K., 1974- (författare)
  • Role of Inducible Nitric Oxide Synthase and Melatonin in Regulation of β-cell Sensitivity to Cytokines
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mechanisms of β-cell destruction leading to type 1 diabetes are complex and not yet fully understood, but infiltration of the islets of Langerhans by autoreactive immune cells is believed to be important. Activated macrophages and T-cells may then secrete cytokines and free radicals, which could selectively damage the β-cells. Among the cytokines, IL-1β, IFN-γ and TNF-α can induce expression of inducible nitric synthase (iNOS) and cyclooxygenase-2. Subsequent nitric oxide (NO) and prostaglandin E2 (PGE2) formation may impair islet function.In the present study, the ability of melatonin (an antioxidative and immunoregulatory hormone) to protect against β-cell damage induced by streptozotocin (STZ; a diabetogenic and free radical generating substance) or IL-1β exposure was examined. In vitro, melatonin counteracted STZ- but not IL-1β-induced islet suppression, indicating that the protective effect of melatonin is related to interference with free radical generation and DNA damage, rather than NO synthesis. In vivo, non-immune mediated diabetes induced by a single dose of STZ was prevented by melatonin.Furthermore, the effects of proinflammatory cytokines were examined in islets obtained from mice with a targeted deletion of the iNOS gene (iNOS -/- mice) and wild-type controls. The in vitro data obtained show that exposure to IL-1β or (IL-1β + IFN-γ) induce disturbances in the insulin secretory pathway, which were independent of NO or PGE2 production and cell death. Initially after addition, in particular IL-1β seems to be stimulatory for the insulin secretory machinery of iNOS –/- islets, whereas IL-1β acts inhibitory after a prolonged period. Separate experiments suggest that the stimulatory effect of IL-1β involves an increased gene expression of phospholipase D1a/b. In addition, the formation of new insulin molecules appears to be affected, since IL-1β and (IL-1β + IFN-γ) suppressed mRNA expression of both insulin convertase enzymes and insulin itself.
  •  
9.
  • Barbu, Andreea Roxana, 1973- (författare)
  • In vitro Studies of β-cell Death and Survival. Modulation by Adenoviral Vectors and Bcl-2 Overexpression
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 1 diabetes is a multifactorial disease resulting from the selective destruction of insulin-producing β-cells within the pancreatic islets of Langerhans. The mechanisms of β-cell death are not fully understood but cytokines are important mediators of this process. In the present study we found that the combination of IL-1β, TNF-α and IFN-γ induced a nitric oxide-dependent disruption of the mitochondrial membrane potential in rat insulin-producing RINm5F-cells, which seems to be a necessary event for both RINm5F-cell apoptosis and necrosis. The antiapoptotic protein Bcl-2 was able to prevent cellular death in RINm5F cells, most probably by counteracting the mitochondrial permeability transition. These results pointed out the potential of such antiapoptotic genes as gene therapy tools, to allow enhanced resistance against autoimmune destruction of β-cells in type 1 diabetes. For this purpose we used a progesterone-antagonist (RU 486)-inducible gene transfer system to achieve an efficient and controlled Bcl-2 overexpression in primary rat β-cells. However, in our experience, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis, a process that was not prevented by Bcl-2 overexpression. Moreover, we observed that specific adenoviral genotypes correlate with differential induction of necrosis in both human and rat pancreatic islet cells. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell-toxicity, our results showed that they were unable to build up an efficient antiviral response following infection and that their survival was dependent on the exogenous addition of α-interferon.In conclusion, adenoviral techniques for overexpression of antiapoptotic proteins in insulin-producing cells may provide useful tools against β-cell directed autoimmune destruction. However, understanding the specific interactions of the viral gene products with cellular proteins and how they are involved in β-cell death regulation is fundamental for an efficient and safe application of gene therapy approaches to type 1 diabetes.
  •  
10.
  • Makeeva, Natalia, 1977- (författare)
  • Role of MAP Kinases in the Life and Death of Beta-cells
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of diabetes mellitus depends on the balance between beta-cell proliferation and death. As mitogen-activated protein kinases (MAPK) may control this balance, the aim of this study was to investigate the events leading to MAPK activation in beta-cells and the consequences of these events. Overexpression of the SH2-domain containing adaptor protein Shb resulted in the assembly and activation of multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpression cells. This was paralleled by an attenuated activation of the MAP kinases ERK1/2. Thus, Shb-induced alterations in the IRS-1/PI3K/Akt/ERK pathway might explain the increased proliferation and apoptosis of beta-cells overexpressing Shb.The importance of the MAP kinase p38 in nitric oxide- and cytokine-induced beta-cell death was also investigated. Knock-down of p38 expression resulted in a lowered cell death rate in response to a nitric oxide donor. In transient transfections MKK3 over-expression resulted in increased p38 phosphorylation in RIN-5AH cells. In addition, a short-term MKK3 expression resulted in increased cytokine-induced cell death. A nitric oxide synthase inhibitor abolished the MKK3-potentiating effect on cytokine-induced cell death and inhibitors of phosphatases enhanced MKK3-stimulated p38 phosphorylation. Finally, as the dominant negative mutant of MKK3 did not affect cytokine-induced p38 phosphorylation, and as wild type MKK3 did not influence p38 autophosphorylation, it may be that p38 is activated by MKK3/6-independent pathways in response to cytokines and nitric oxide.In further support for an MKK3/6-indepedent mechanism, the adaptor protein TAB1 significantly increased the cytokine- and nitric oxide-stimulated phosphorylation of p38. The TAB1-mediated activation of p38 was paralleled by a compensatory inhibition of ERK and JNK. In summary, p38 MAPK, activated mainly by TAB1, promotes, at least in part, beta-cell death in response to cytokines or nitric oxide.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (15)
doktorsavhandling (7)
samlingsverk (redaktörskap) (3)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (10)
populärvet., debatt m.m. (2)
Författare/redaktör
Wang, Xuan, 1984- (5)
Wikström, Per (4)
Fred, Rikard G. (3)
Andersson, Leif (3)
Carlsson, Per-Ola (3)
visa fler...
Tengholm, Anders (2)
Vasylovska, Svitlana (2)
Bergsten, Peter (2)
Younis, Shady (2)
Wallerman, Ola (2)
Wang, Xuan (2)
Walum, Erik (2)
Wuttke, Anne (2)
Sargsyan, Ernest (2)
Kozlova, Elena N (1)
Johansson, Jan (1)
Berggren, Per-Olof (1)
Kozlova, Elena (1)
Hansson, Anders (1)
Ravassard, Philippe (1)
Li, Jia (1)
Idevall-Hagren, Olof (1)
Tengholm, Anders, 19 ... (1)
Eizirik, Decio L (1)
Westermark, Gunilla (1)
Sandler, Stellan (1)
Andersson, Annika K. ... (1)
Billestrup, Nils, Ph ... (1)
Jiang, Lin (1)
Westermark, Gunilla ... (1)
Anvari, Ebrahim (1)
Lau, Joey, 1979- (1)
Presto, Jenny (1)
Larsson, Mårten (1)
Roomans, Godfried (1)
Saldeen, Johan (1)
Barbu, Andreea Roxan ... (1)
Eiziric, Decio, Prof ... (1)
Li, Tingting (1)
Ingelsson, Erik, 197 ... (1)
Hermansson, Erik (1)
Wang, Ye (1)
Klaesson, Axel (1)
Cen, Jing (1)
Larsson, Olof (1)
Sjöholm, Åke (1)
Carlsson, Per-Ola, P ... (1)
Jansson, Leif, Profe ... (1)
Sagetorp, J (1)
visa färre...
Lärosäte
Uppsala universitet (27)
Karolinska Institutet (3)
Högskolan i Gävle (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy