SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

AND is the default operator and can be omitted

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) ;lar1:(hh);pers:(Xu B)"

Search: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) > Halmstad University > Xu B

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hagert, C., et al. (author)
  • Chronic Active Arthritis Driven by Macrophages Without Involvement of T Cells : A Novel Experimental Model of Rheumatoid Arthritis
  • 2018
  • In: Arthritis & Rheumatology. - Hoboken : Wiley. - 2326-5191 .- 2326-5205 .- 1529-0131. ; 70:8, s. 1343-1353
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To develop a new chronic rheumatoid arthritis model that is driven by the innate immune system. METHODS: Injection of a cocktail of 4 monoclonal antibodies against type II collagen, followed on days 5 and 60 by intraperitoneal injections of mannan (from Saccharomyces cerevisiae), was used to induce development of chronic arthritis in B10.Q mice. The role of the innate immune system as compared to the adaptive immune system in this arthritis model was investigated using genetically modified mouse strains. RESULTS: A new model of chronic relapsing arthritis was characterized in B10.Q mice, in which a persistently active, chronic disease was found. This relapsing disease was driven by macrophages lacking the ability to mount a reactive oxygen species response against pathogens, and was associated with the classical/alternative pathway, but not the lectin pathway, of complement activation. The disease was independent of Fcgamma receptor type III, and also independent of the activity of adaptive immune cells (B and T cells), indicating that the innate immune system, involving complement activation, could be the sole driver of chronicity. CONCLUSION: Chronic active arthritis can be driven innately by macrophages without the involvement of T and B cells in the adaptive immune system.
  •  
2.
  • Raposo, B., et al. (author)
  • Epitope-specific antibody response is controlled by immunoglobulin V(H) polymorphisms
  • 2014
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 211:3, s. 405-411
  • Journal article (peer-reviewed)abstract
    • Autoantibody formation is essential for the development of certain autoimmune diseases like rheumatoid arthritis (RA). Anti-type II collagen (CII) antibodies are found in RA patients; they interact with cartilage in vivo and are often highly pathogenic in the mouse. Autoreactivity to CII is directed to multiple epitopes and conserved between mice and humans. We have previously mapped the antibody response to CII in a heterogeneous stock cohort of mice, with a strong association with the IgH locus. We positioned the genetic polymorphisms and determined the structural requirements controlling antibody recognition of one of the major CII epitopes. Polymorphisms at positions S31R and W33T of the associated variable heavy chain (VH) allele were identified and confirmed by gene sequencing. The Fab fragment binding the J1 epitope was crystallized, and site-directed mutagenesis confirmed the importance of those two variants for antigen recognition. Back mutation to germline sequence provided evidence for a preexisting recognition of the J1 epitope. These data demonstrate a genetic association of epitope-specific antibody responses with specific VH alleles, and it highlights the importance of germline-encoded antibodies in the pathogenesis of antibody-mediated autoimmune diseases.
  •  
3.
  • Lahore, G. F., et al. (author)
  • Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:40, s. 24986-24997
  • Journal article (peer-reviewed)abstract
    • It has proven difficult to identify the underlying genes in complex autoimmune diseases. Here, we use forward genetics to identify polymorphisms in the vitamin D receptor gene (Vdr) promoter, controlling Vdr expression and T cell activation. We isolated these polymorphisms in a congenic mouse line, allowing us to study the immunomodulatory properties of VDR in a physiological context. Congenic mice overexpressed VDR selectively in T cells, and thus did not suffer from calcemic effects. VDR overexpression resulted in an enhanced antigen-specific T cell response and more severe autoimmune phenotypes. In contrast, vitamin D3-deficiency inhibited T cell responses and protected mice from developing autoimmune arthritis. Our observations are likely translatable to humans, as Vdr is overexpressed in rheumatic joints. Genetic control of VDR availability codetermines the proinflammatory behavior of T cells, suggesting that increased presence of VDR at the site of inflammation might limit the antiinflammatory properties of its ligand.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view